Network Layer IV

Dmitri Loguinov
Texas A&M University

November 14, 2019

Original slides copyright © 1996-2004 J.F Kurose and K.W. Ross
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Distance Vector Algorithm

• Two metrics known to each node x
 – Estimate $D_x(y)$ of least cost from x to y
 – Link cost $c(x,v)$ to reach x’s immediate neighbors

• Each node maintains a distance vector:

$$\vec{D}_x = \{D_x(y) : y \in V\}$$

• Node x periodically asks its neighbors for their distance vectors
 – Thus, x has access to the following for each neighbor v

$$\vec{D}_v = \{D_v(y) : y \in V\}$$
Distance Vector Algorithm (cont’d)

Basic idea (Bellman-Ford):

- When a node x receives new DV estimate from neighbor v, it updates its own DV using the Bellman-Ford equation:

\[D_x(y) \leftarrow \min\{D_x(y), c(x,v) + D_v(y)\}, \forall y \in V \]

- Centralized Bellman Ford requires $O(|V| \cdot |E|)$ time
 - Dijkstra’s algorithm was $O(|V| \cdot \log|V|)$
 - Convergence of decentralized version depends on topology, link weights, update delays, and timing of events

- Bellman Ford allows negative weights
Distance Vector Algorithm (cont’d)

Iterative, asynchronous

Each iteration caused by:
- Local link cost change
- DV update message from neighbor

Distributed:
- Each node notifies neighbors *only* when its DV changes
 - Neighbors then notify their neighbors if necessary

Each node:

- wait for (change in local link cost or msg from neighbor)
- recompute estimates
- if DV to any dest has changed, notify neighbors
<table>
<thead>
<tr>
<th>from</th>
<th>cost to</th>
<th>from</th>
<th>cost to</th>
<th>from</th>
<th>cost to</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td>z</td>
<td>7</td>
</tr>
</tbody>
</table>

Diagram:

- **Node x table:**
 - From x: [0, 2, 7]
 - From y: [∞, ∞, ∞]
 - From z: [∞, ∞, ∞]

- **Node y table:**
 - From x: [∞, ∞, ∞]
 - From y: [2, 0, 1]
 - From z: [∞, ∞, ∞]

- **Node z table:**
 - From x: [∞, ∞, ∞]
 - From y: [2, 0, 1]
 - From z: [7, 1, 0]
Distance Vector: Link Cost Changes

Link cost changes:
• Node detects local link cost change
• Recalculates distance vector, updates routing info if needed
• If DV changes, notifies neighbors

“good news travels fast”
• Node y detects link-cost change, updates its distance to x, and informs its neighbors
• Node z receives y’s message and updates its table; computes a new least-cost to x and sends its DV to x and y
• Finally, node y receives z’s vector and updates its distance table; y’s least costs do not change and hence y does not send any messages after that
Distance Vector: Link Cost Changes

Link cost changes:
• Good news travels fast
• Bad news travels slow – “count to infinity” problem!
• 46 iterations before algorithm stabilizes

Poisoned reverse (“split horizon”):
• If \(z \) routes through \(y \) to get to \(x \):
 - \(z \) tells \(y \) that its (\(z \)’s) distance to \(x \) is infinite (so \(y \) won’t route to \(x \) via \(z \))
• Will this completely solve count to infinity problem?
Comparison of LS and DV Algorithms

Message complexity
- **LS**: with n nodes, E links, $O(nE)$ msgs sent
- **DV**: exchange between neighbors only
 - Depends on convergence time

Time to Convergence
- **LS**: $O(n \log n)$ algorithm + delay to send $O(nE)$ msgs
 - Oscillations (cost = congestion)
- **DV**: convergence time varies
 - May have routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?
- **LS**:
 - Node can advertise incorrect link cost
 - Affects only a small portion of the graph
- **DV**:
 - DV node can advertise incorrect path cost
 - Each node’s table used by others
 - Errors propagate thru network
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Hierarchical Routing

Problems in practice:
• Memory: can’t store paths to all destinations in a routing table (several billion links)
• CPU time: can’t overload routers with such huge computational expense
• Message overhead: routing table exchanges would overload links

• Competitiveness: ISPs not willing to share their topology with others

Solution: administrative autonomy
• Internet = network of networks
• Network admins control routing in their own networks, export reachable subnets to outside world
Hierarchical Routing

- Aggregate routers into regions called **AS** (Autonomous Systems)
- Routers in the same AS run the same algorithm
 - Accomplished via intra-AS routing protocols
- ISPs gain flexibility
 - Routers in different ASes can run different intra-AS protocols that cannot directly speak to each other, which is OK

Gateway routers

- Direct links to routers in other ASes
- Exchange routing view of each AS using an inter-AS protocol
 - Summary of subnets to which this AS is willing to route

Texas A&M owns AS3794 with two subnets: 128.194/16 and 165.91/16
Interconnected ASes

- Intra-AS sets entries for all internal dests
 - E.g., 1a plots shortest path to 1b using link-state alg
- Inter-AS accepts external dests from neighbor ASes
 - E.g., 1b learns 128.194/16 is reachable via AS2
- Inter-AS broadcasts pairs (subnet, exit router)
 - E.g., 1b notifies all routers in AS1 that it can reach 128.194/16

Terminology: exit router = border router = gateway
Example: Choosing Among Multiple ASes

• Now suppose AS1 learns from the inter-AS protocol that 128.194/16 is reachable from AS3 and from AS2
 - To configure forwarding table, routers in AS1 must determine towards which exit (1c or 1b) they must forward packets

• This is also the job of inter-AS routing protocol!
 - Usually based on ISP policy, SLAs, prior traffic engineering

• Hot potato routing: send packet towards closest of two exit points (other options discussed later)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Intra-AS Routing

- Common intra-AS routing protocols:
 - RIP: Routing Information Protocol (DV)
 - OSPF: Open Shortest Path First (LS)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary, DV, now obsolete); EIGRP (Extended IGRP)
 - IS-IS (Intermediate System to Intermediate System, LS)
- For Inter-AS, there is now just one option
 - BGP (Border Gateway Protocol)
 - All ISPs must support it
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
RIP (Routing Information Protocol)

- Included in BSD-UNIX distribution in 1982
 - Distance vector algorithm
- Distance metric: # of hops (max = 15)
 - Distance vectors: exchanged among neighbors every 30 sec using advertisement messages
 - Each message: lists of up to 25 destination nets within AS

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Hops from A</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
```
RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec → neighbor/link declared dead
 - Routes via neighbor invalidated
 - New advertisements sent to neighbors
 - Neighbors in turn send out new advertisements (if tables changed)
 - Link-failure info propagates to entire network

- That’s why it is important to assign high priority to packets from routing protocols at ISP routers
 - Shows that QoS can work in a limited context

- RIP uses poisoned reverse to prevent loops (infinite distance = 16 hops)
RIP Table Processing

- RIP routing tables managed by an application-level process called *routed* (daemon)
- Advertisements sent in UDP packets (port 520)

Note: named, smtpd, etc. are Unix daemons (services)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
OSPF (Open Shortest Path First)

- “Open”: protocol specifications publicly available
- Uses Link State (LS) algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra’s algorithm
- Advertisements disseminated to **entire AS** (via flooding)
 - Carried in OSPF messages directly over IP (rather than TCP or UDP) using protocol number 89
 - Layer 3.5 similar to ICMP
 - Handles own error detection/correction
OSPF “Advanced” Features (Not in RIP)

- **Security:** all OSPF messages authenticated to prevent malicious intrusion
- **Multiple same-cost paths** allowed (only one path in RIP)
- **Integrated uni- and multicast support:**
 - Multicast OSPF (MOSPF) uses same topology database as OSPF
- **Hierarchical OSPF** in large domains
Hierarchical OSPF
Hierarchical OSPF

- **Two-level hierarchy:** local area, backbone
 - Link-state advertisements only in area
 - Each node has a detailed topology for the area it belongs to and shortest paths to all destinations therein

- **Area border routers:** “summarize” distances to networks in their own area, advertise to other area border routers

- **Backbone routers:** run OSPF routing limited to the backbone

- **Boundary routers:** connect to other AS’s