Transport Layer VI

Dmitri Loguinov
Texas A&M University

October 29, 2019
Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
 - Segment structure
 - Reliable data transfer
 - Flow control
 - Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
TCP Throughput

- What's the average throughout of TCP as a function of max window size W and RTT?
 - Ignore slow start and assume perfect AIMD (no timeouts)
- Let W be the window size when loss occurs
- When window is W, throughput is $W \times MSS / RTT$
- Just after loss, window drops to $W/2$, throughput to $W \times MSS / (2RTT)$
- Average rate: $3/4 \times W \times MSS / RTT$

$$r_{av} = \frac{3}{4} \times \frac{W \times MSS}{RTT} = \frac{W_{av} \times MSS}{RTT}$$
TCP Model

• **Example**: 1500-byte segments, 100 ms RTT, want 10 Gbps average throughput r_{av}
 – Requires max window size $W = 111,111$ in-flight segments, 166 MB of buffer space ($W_{av} = 83,333$ packets)
 – But there are bigger issues as discussed below

• **Next**: derive average throughput in terms of loss rate
 – Assume packet loss probability is p
 – Roughly one packet lost for every $1/p$ sent packets

• **Step 1**: derive the number of packets transmitted in one oscillation cycle
TCP Model

- Examine time in terms of RTT units
 - At each step, window increases by 1 packet
- The number of packets sent between two losses:
 \[\text{sent} = \frac{W}{2} + \left(\frac{W}{2} + 1\right) + \left(\frac{W}{2} + 2\right) + \ldots + W \]
- Combining \(W/2\) terms, we have:
 \[\text{sent} = \frac{W}{2} \left(\frac{W}{2} + 1\right) + \sum_{i=1}^{W/2} i \]
TCP Model

• Thus we arrive at:

\[\text{sent} = \frac{3}{8} W^2 + \frac{3}{4} W \]

• Step 2: now notice that this number equals \(1/p\)

• Ignoring the linear term, we approximately get:

\[\frac{1}{p} \approx \frac{3}{8} W^2 \]

• In other words:

\[W = \sqrt{\frac{8}{3p}} \]
TCP Model

- **Step 3**: writing in terms of average rate:

\[
r_{av} = \frac{W_{av} \times MSS}{RTT} = \frac{3}{4}W \times MSS \times \frac{3\sqrt{8}}{3p} \times MSS
\]

- Simplifying:

\[
r_{av} = \frac{\sqrt{3/2} \times MSS}{RTT \sqrt{p}} \approx \frac{1.22 \times MSS}{RTT \sqrt{p}}
\]

- This is the famous formula of AIMD throughput
 - Note: homework #3 does not use congestion control and its rate is a different function of \(p \)
TCP Model (Discussion)

\[\frac{1.22 \times MSS}{RTT \sqrt{p}} \]

- **Example:** What is the required packet loss for 100-ms RTT, 1500-byte MSS, and 10 Gbps average rate?
 - Turns out, \(p = 2.1 \times 10^{-10} \), which is almost impossible (even in wired networks corruption occurs more frequently)
 - Backbone loss \(p = 10^{-4} \) (and even \(10^{-3} \)) is considered great

- **Example:** In AIMD, how long does it take for TCP to go from 5 Gbps average rate to 10 Gbps?
 - Window must grow from 41,666 pkts to 83,333
 - TCP needs \((83,333 - 41,666)\) RTTs to close this gap
 - This is 4,166 seconds = 1 hour 9 minutes

- **Over long-distance links (RTT > 50 ms), AIMD typically maxes out around 200 Mbps**
TCP Future

- TCP is slow, but what if most transfers are short?
 - How long before TCP reaches 10 Gbps in slow start?
- **Idea**: starting at $W = 1$ we need to reach $W = 83,333$ pkts at an exponential rate
- The time needed to reach full capacity is $\text{ceil}(\log_2(83333)) \times RTT = 1.7$ seconds (17 steps)!
- How much data can we squeeze in slow start?
 \[
 \text{pkts sent} = 1 + 2 + 4 + 8 + \ldots + 2^{17} = 2^{18} - 1
 \]
- Total data transmitted (pkt size 1500) ≈ 393 MB
 - **Conclusion**: short connects are fine with current TCP
TCP Fairness

Fairness goal: If K TCP sessions share the same bottleneck link of bandwidth C, each should have an average rate of C/K.

Fairness index of two flows:

$$\Phi = \frac{\min(x, y)}{\max(x, y)}$$
TCP Fairness 2

• Fairness index $= 1$ is ideal since the rates are equal
• Fairness index $= 0$ means maximally unfair conditions
• Analysis using the system trajectory plot
 - Trajectory follows rates of flows x and y on a 2D plane
 - The plot connects points $(x(t), y(t))$, where t is time in RTT steps, $x(t)$ and $y(t)$ are the rates of the two flows
TCP Fairness 3

- Useful lines on this 2D plane
 - Fairness: \(y = x \)
 - Efficiency: \(x + y = C \)
 - Equi-fairness: \(y = mx \)

- Visual analysis
 - Which point(s) have packet loss?
 - Which point is more fair \(A \) or \(C \)?
TCP Fairness 4

- The **fairness line** is where flow rates are equal
 - Hence, the goal is to converge the system to this line
- The **efficiency line** intersects both axes at \(C \)
 - When flows cross the efficiency line, they have loss
 - In uncongested cases, the system is below this line
- All points along the **equi-fairness line** have the same fairness index
 - Given initial flow rates \((x, y)\), rates \((\alpha x, \alpha y)\) have the same fairness index for any \(\alpha > 0\)
TCP Fairness 5

- Now examine what AIMD does (fixed MSS and RTT)
 - Start with additive increase
 - Why is this move parallel to the fairness line?
 - What happens to fairness?

In terms of rate:

\[
W = \begin{cases}
W + 1 & \text{per RTT} \\
W/2 & \text{per loss}
\end{cases}
\]

\[
r = \begin{cases}
\frac{r + \frac{MSS}{RTT}}{2} & \text{per RTT} \\
\frac{r}{2} & \text{per loss}
\end{cases}
\]
TCP Fairness 6

- Now consider additive decrease
 - Additive constant in the decrease step reduces fairness
Now examine a combination of additive increase and additive decrease (AIAD):
- The system fluctuates between two fairness states without advancing towards the fairness line.
Now examine MI (multiplicative increase) and MD (multiplicative decrease)

What happens to fairness in each case?
MIMD moves the system along the corresponding equi-fairness line
- Does not converge to fairness either
Why Is TCP Fair?

Two competing sessions

• Assume initial rate y is lower, i.e., $x(0) > y(0)$:

• First consider the additive increase (AI) step
 - New rates:
 \[x(n+1) = x(n) + \frac{MSS}{RTT}, \]
 \[y(n+1) = y(n) + \frac{MSS}{RTT} \]
 - Prove that $\Phi(n+1) > \Phi(n)$

• Multiplicative decrease (MD)
 - New rates $x(n+1) = x(n)/2, y(n+1) = y(n)/2$
 - Prove that $\Phi(n+1) = \Phi(n)$
Why Is TCP Fair?

- Fairness stays the same during MD and improves during AI, eventually converging to 1
 - Intuitive reasoning: during increase, both flows gain bandwidth at the same rate; however, during decrease, the faster flow releases more

\[
\text{loss: decrease window by factor of 2} \quad \text{no loss: increase by } \frac{\text{MSS}}{\text{RTT}}
\]
Fairness Example

- **AIMD example**
 - $C = 1544$ Kbps, 2 flows
- **Start in the maximally unfair state**
 - $x(0) = 1544$, $y(0) = 0$
- **Eventually converge to fairness**
- **Caveat**: fairness in TCP is achievable only when flows have the same RTT and MSS
Fairness (Final Thoughts)

Fairness and UDP
- Multimedia apps often do not use TCP
 - Do not want rate throttled by congestion control
- Instead use UDP:
 - Pump audio/video at constant rate, tolerate packet loss
- Research area: TCP-friendly transport over UDP

Fairness and parallel TCP connections
- Nothing prevents app from opening parallel flows between 2 hosts
- Web browsers do this
- **Example:** link of rate C with 10 flows present:
 - New app asks for 1 TCP connection, gets rate $C/11$
 - New app asks for 10 TCPs, gets $C/2$!
Chapter 3: Summary

• Principles behind transport layer services:
 – Multiplexing, demultiplexing
 – Reliable data transfer
 – Flow control
 – Congestion control

• Instantiation and implementation in the Internet
 – UDP
 – TCP

Next:
• Leaving the network “edge” (application, transport layers)
• Into the network “core”