Transport Layer VI
Dmitri Loguinov
Texas A&M University

October 26, 2023
Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
 - Segment structure
 - Reliable data transfer
 - Flow control
 - Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
TCP Throughput

• What’s the average throughout of TCP as a function of max window size W and RTT?
 - Ignore slow start and assume perfect AIMD (no timeouts)
• Let W be the window size when loss occurs
 - At that time, throughput is $W \times \frac{MSS}{RTT}$
 - Just after loss, window drops to $W/2$, throughput is halved
• Average rate:

$$ r_{av} = \frac{3}{4} \times \frac{W \times MSS}{RTT} = \frac{W_{av} \times MSS}{RTT} $$
TCP Model

- **Example**: 1500-byte segments, 100 ms RTT, want 10 Gbps average throughput r_{av}
 - Requires max window size $W = 111,111$ in-flight segments, 166 MB of buffer space ($W_{av} = 83,333$ packets)
 - But there are bigger issues as discussed below

- **Next**: derive average throughput in terms of loss rate
 - Assume packet loss probability is p
 - Roughly one packet lost for every $1/p$ sent packets

- **Step 1**: derive the number of packets transmitted in one oscillation cycle
TCP Model

- Examine time in terms of RTT units
 - At each step, window increases by 1 packet
- The number of packets sent between two losses:
 \[\text{sent} = \frac{W}{2} + \left(\frac{W}{2} + 1 \right) + \left(\frac{W}{2} + 2 \right) + \ldots + W \]
- Combining \(W/2 \) terms, we have:
 \[\text{sent} = \frac{W}{2} \left(\frac{W}{2} + 1 \right) + \sum_{i=1}^{W/2} i \]
TCP Model

• Thus we arrive at:

\[\text{sent} = \frac{3}{8}W^2 + \frac{3}{4}W \]

• **Step 2**: now notice that this number equals \(1/p\)
 - Ignoring the linear term, we approximately get:

\[\frac{1}{p} \approx \frac{3}{8}W^2 \]

• In other words:

\[W = \sqrt{\frac{8}{3p}} \]
TCP Model

- **Step 3**: writing in terms of average rate:

\[
r_{av} = \frac{W_{av} \times MSS}{RTT} = \frac{3}{4}W \times MSS \quad \frac{3}{4}\sqrt{\frac{8}{3p}} \times MSS
\]

- Simplifying:

\[
r_{av} = \frac{\sqrt{3/2} \times MSS}{RTT \sqrt{p}} \approx \frac{1.22 \times MSS}{RTT \sqrt{p}}
\]

- This is the famous formula of AIMD throughput

 - Note: homework #3 does not use congestion control and its rate is a different function of \(p \)
TCP Model (Discussion)

• Example: What is the required packet loss for 100-ms RTT, 1500-byte MSS, and 10 Gbps average rate?
 - Turns out, $p = 2.1 \times 10^{-10}$, which is almost impossible (even in wired networks corruption occurs more frequently)
 - Backbone loss $p = 10^{-4}$ (and even 10^{-3}) is considered great

• Example: In AIMD, how long does it take for TCP to go from 5 Gbps to 10 Gbps?
 - Window must grow from 41,666 pkts to 83,333
 - TCP needs (83,333 - 41,666) RTTs to close this gap
 - This is 4,166 seconds = 1 hour 9 minutes

• Over long-distance links (RTT > 50 ms), AIMD typically maxes out around 200 Mbps
TCP Future

- TCP is slow, but what if most transfers are short?
 - How long before TCP reaches 10 Gbps in slow start?
- Idea: starting at $W = 1$ we need to hit $W = 83,333$ pkts, doubling the window each RTT
- The time needed to reach full capacity is $\text{ceil} \left(\log_2(83333) \right) \times RTT = 1.7 \text{ seconds (17 steps)!}$
- How much data can we squeeze in slow start?
 \[
 \text{pkts sent} = 1 + 2 + 4 + 8 + \ldots + 2^{17} = 2^{18} - 1
 \]
- Total data transmitted (pkt size 1500) $\approx 393 \text{ MB}$
 - Conclusion: short connects are fine with original TCP
TCP Fairness

Fairness goal: if \(K \) TCP sessions share same bottleneck link of bandwidth \(C \), each should have average rate of \(C/K \)

Fairness index of two flows:

\[
\Phi = \frac{\min(x, y)}{\max(x, y)}
\]
TCP Fairness 2

- Fairness index $= 1$ is ideal since the rates are equal
- Fairness index $= 0$ means maximally unfair conditions
- Analysis using the system trajectory plot
 - Trajectory follows rates of flows x and y on a 2D plane
 - The plot connects points $(x(t), y(t))$, where t is time in RTT steps, $x(t)$ and $y(t)$ are the rates of the two flows.
TCP Fairness 3

- Useful lines on this 2D plane
 - Fairness: \(y = x \)
 - Efficiency: \(x + y = C \)
 - Equi-fairness: \(y = mx \) (infinitely many, one for each \(m \))

- Visual analysis
 - Which point(s) have packet loss?
 - Which point is more fair \(A \) or \(C \)?
TCP Fairness 4

- The **fairness line** is where flow rates are equal
 - Hence, the goal is to converge the system to this line
- The **efficiency line** intersects both axes at C
 - When flows cross the efficiency line, they have loss
 - In uncongested cases, the system is below this line
- All points along the **equi-fairness line** have the same fairness index
 - Given initial flow rates (x, y), rates $(\alpha x, \alpha y)$ have the same fairness index for any $\alpha > 0$
TCP Fairness 5

- Now examine what AIMD does (fixed MSS and RTT)
 - Start with additive increase
 - Why is this move parallel to the fairness line?
 - What happens to fairness?

In terms of rate:

\[W = \begin{cases} W + 1 & \text{per RTT} \\ W/2 & \text{per loss} \end{cases} \]

\[r = \begin{cases} r + \frac{MSS}{RTT} & \text{per RTT} \\ r/2 & \text{per loss} \end{cases} \]
TCP Fairness 6

• Now consider additive decrease
 - Additive constant in the decrease step reduces fairness
Now examine a combination of additive increase and additive decrease (AIAD):

- The system fluctuates between two unfair states without convergence to the fairness line.
Now examine MI (multiplicative increase) and MD (multiplicative decrease).

What happens to fairness in each case?
- MIMD moves the system along the corresponding equi-fairness line
 - Does not converge to fairness either
Why Is TCP Fair?

Two competing sessions

- Assume initial rate y is lower, i.e., $x(0) > y(0)$:
- First consider the additive increase (AI) step
 - New rates:
 \[
 x(n+1) = x(n) + \frac{MSS}{RTT}, \quad y(n+1) = y(n) + \frac{MSS}{RTT}
 \]
 - Prove that $\Phi(n+1) > \Phi(n)$
- Multiplicative decrease (MD)
 - New rates $x(n+1) = x(n)/2$, $y(n+1) = y(n)/2$
 - Prove that $\Phi(n+1) = \Phi(n)$
Why Is TCP Fair?

- Fairness stays the same during MD and improves during AI, eventually converging to 1
 - Intuitive reasoning: during increase, both flows gain bandwidth at the same rate; however, during decrease, the faster flow releases more

\[
\text{equal bandwidth share}
\]

loss: decrease window by factor of 2
no loss: increase by \(\frac{MSS}{RTT}\)
Fairness Example

- AIMD example
 - $C = 1544$ Kbps, 2 flows
- Start in the maximally unfair state
 - $x(0) = 1544$, $y(0) = 0$
- Eventually converge to fairness
- **Caveat**: fairness in TCP is achievable only when flows have the same RTT and MSS
Fairness (Final Thoughts)

Fairness and UDP

- Multimedia apps often do not use TCP
 - Do not want rate throttled by congestion control
- Instead use UDP:
 - Pump audio/video at constant rate, tolerate packet loss
- Research area: TCP-friendly transport over UDP (e.g., QUIC)

Fairness and parallel TCP connections

- Nothing prevents app from opening parallel flows between 2 hosts
- Web browsers do this
- Example: link of rate C with 10 flows present:
 - New app asks for 1 TCP connection, gets rate $C/11$
 - New app asks for 10 TCPs, gets $C/2$
Chapter 3: Summary

• Principles behind transport layer services:
 – Multiplexing, demultiplexing
 – Reliable data transfer
 – Flow control
 – Congestion control

• Instantiation and implementation in the Internet
 – UDP
 – TCP

Next:
• Leaving the network “edge” (application, transport layers)
• Into the network “core”