
CSCE 313-200: Computer Systems 
Homework #4 (100 pts) 

Due date: 5/4/25 

1. Purpose 
Build a fast word indexer for Wikipedia, experiment with virtual memory in Windows, 
and design a high-performance parallel hash table.  

2. Problem Description 
The goal is this project is to count the number of times each valid word appears in vari-
ous Wikipedia files and build a distribution of word frequencies. Since the large Wikipe-
dia has over 8M unique words, the approach of homework #3 simply does not scale here. 
Instead, the new objective is to implement an efficient parallel word-hashing technique 
and raise the search speed to 900 MB/s on TS (assuming cached I/O). Sorting all words 
in descending-frequency order, the report will examine this distribution for compliance 
with Zipf’s law (more below). 

While the disk thread remains unchanged, there are several new elements to search 
threads. First, the text will have to be broken up into words, which will be hashed into 64-
bit integers using a uniformly random hash function called sbox. Note that your hashing 
must be done in a single-pass over each word, meaning you cannot find word delimiters 
and then come back to hash the word. Second, for efficiency purposes, detection of valid 
characters/delimiters and conversion of text to lower-case must be done using Lookup 
Tables (LUTs) as explained below. Third, you will need to develop a custom hash table 
that will densely pack (key,value) pairs in your own buffer, bypassing all heap opera-
tions. This buffer will have to grow dynamically, similar to the circular array in My-
Queue of homework #2. However, this expansion will directly utilize virtual memory re-
mapping and will avoid copying the old buffer into the new one. Fourth, once this archi-
tecture works, you will need to parallelize it to N cores and achieve an almost linear 
speed-up. Simple approaches (some discussed below) won’t work and you will need to 
come up with some alternative designs.  

2.1. Code 

Your program should accept two command-line arguments – read buffer size given as a 
power of 2 (i.e., 223 bytes in this example) and the file to index:  

wordIndexer.exe 23 enwiki-small.txt 

Several printouts are needed. First, the stats thread shall print in the following format 
every 2 seconds: 
[44.5%] 930.2 MB/s, words 581.6M, depth (1.088, 14), [CPU 100% 228 MB] 
 

where this example shows that 44.5% of the file has been processed by the search 
threads, the rate at which this file is being indexed is 930 MB/s, and the total number of 

 1



words processed up to this point is 581.6M (which includes invalid words). The next two 
values show the average and maximum depth of chains in the hash table visited during 
lookup. Note that this reflects all lookups, not just those that create new elements. The 
last two values are the same as in homework #2. Percentage completed, words found, and 
hash-table depth are cumulative; the other parameters are computed over the last 2 sec-
onds.  

When the search is finished, the program should print the following: 

Execution time: 9.86 sec, 875.8 MB/s, 130.0M wps 
Unique:  4,871,639 
Invalid: 332,772,578 
Total:  1,281,459,881 

where wps stands for words per second and the timer stops after the final distribution of 
counts is ready, but before the words have been sorted by frequency or saved to disk. The 
next three lines refer to unique, invalid, and all words processed during the search (the 
rules for classifying words as invalid are explained below). To compute wps, divide the 
total number of found words (i.e., 1,281,459,881) by the execution time (i.e., 9.86).  

Additionally, all screen printouts and the final distribution of word frequencies, sorted 
from the largest to the smallest, with ties broken alphabetically, should be written to re-
port.txt: 

[0] the = 81,010,395 
[1] and = 33,426,873 
[2] was = 12,376,966 
[3] for = 9,800,783 
... 
[1,296,387] zzo = 5 
[1,296,388] zzoom = 5 
[1,296,389] zzounds = 5 
[1,296,390] zzzs = 5   // note the alphabetic order here 
[1,296,391] aaaaaaaaa = 4 
[1,296,392] aaaaah = 4 
[1,296,393] aaaaiaaj = 4 
[1,296,394] aaaargh = 4 
[1,296,395] aaahoo = 4 
[1,296,396] aaahs = 4 
...  

See traces at the end for more examples. All main I/O must be done with CreateFile / 
ReadFile, while stat printouts may use fopen/fprintf. STL is not allowed except std::sort() 
for sorting the frequencies. Do not use vectors or other STL constructs, std::sort() can be 
applied to an array of arbitrary classes: 

class MyClass { 
 // some data 
 bool operator< (MyClass x) { return ... } 
}; 
MyClass *mc = new MyClass [100]; 
std::sort (mc, mc + 100);  

Since you will be sorting counters and variable-length strings packed together in some 
huge buffer (see below), MyClass will have to contain a pointer to the data.  
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2.2. Report 

As before, 25% of the grade is allocated to the report.  

1. (5 pts) Run your code on all four versions of Wikipedia. Use the format of section 
6, but expand the range to show the top 20 words and those ranked 5000-5020. 
Discuss how you break the ties alphabetically among the words with equal count-
ers, lessons learned, and any interesting issues encountered during this homework.  

2. (5 pts) Explain your design for the parallel hash table (including any failed at-
tempts) and plot its running speed (in MB/s) vs the number of cores using the me-
dium Wikipedia and cached I/O. Determine the optimal number of bins H and 
discuss how you arrived at that value. 

3. (5 pts) What is the average word length in each of the four datasets? Search in 
Google for similar results (in any text collection) and contrast your values with 
those in prior work. Analyze the word-length distribution among all valid words 
in the large Wikipedia file and plot a chart similar to Figure 1(a). 

4. (10 pts) Examine your data for compliance with Zipf’s law. Zipf observed in the 
1930s that word frequency f plotted against rank r followed a power-law function 
f ~ r –b, where b was close to 1. Show a log-log plot similar to Figure 1(b) for the 
top 10K words in the large Wikipedia and discuss the result. Use Excel’s function 
Add Trendline, select type Power, and choose the options to display both the 
equation and the R2 correlation. See http://en.wikipedia.org/wiki/Zipf's_law for 
more information and http://imonad.com/seo/wikipedia-word-frequency-list/ for a 
similar project.  
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Figure 1. (a) Word length distribution. (b) Verification of Zipf’s law. Both use the medium file.  

3. Word Tokenizer 
This section develops the necessary ideas to detect valid words and compute their hashes.  

3.1. Overview 

Assume MyBuf *mb is the next buffer passed to the search thread (see homework #3 for 
MyBuf members). The code below uses offset off into mb->ptr to keep track of the cur-
rent position. Note that this loop runs while off < mb->lastStart, where the latter is 
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controlled by the disk thread and signals the last position before which a word may begin. 
Specifically, it equals B-L for the first buffer, B for all intermediate, and bytesRead + L 
for the last one. If the file fits into a single buffer (which now happens to be both first and 
last), then mb->lastStart = bytesRead.  
while (off < mb->lastStart)  // word cannot start at or after this point 
{ 

// next word starts before mb->lastStart? 
 if (FindNextWordStart (mb, off, &wordStart) == EOB) 
  break; 
 
 // this word ends before mb->size? then return wordEnd and its hash 
 if (FindThisWordEnd (mb, wordStart, &wordEnd, &hashKey) == EOB) 

{ 
invalidWords ++; 
totalWords ++; 

  break; 
 } 
 
 wordLen = wordEnd – wordStart; 
 if (WordIsEligible (mb, wordStart, wordEnd))   
  // insert in hash table using hashKey 
 else  
  invalidWords ++; 

 
totalWords ++; 

 off = wordEnd + 1; 
} 

The search first locates the start of the next word by skipping all non-alpha characters 
from the current position off. If no word begins before mb->lastStart, function 
FindNextWordStart returns a special end-of-buffer (EOB) constant. If a new word is 
found, FindThisWordEnd rolls through the word computing its hash, which is returned in 
hashKey, and stops at the first non-alpha character, whose offset is returned in wordEnd. 
If the word runs outside the buffer boundary, the function returns an EOB.  

If a complete word is found within the correct boundaries, function WordIsEligible 
verifies that it’s neither too long nor too short and that it’s surrounded by proper word 
delimiters (see below). Finally, if the word passes all checks, it is inserted into the hash 
table. For ease of debugging, you may want to NULL-terminate the word and increment 
its length by 1. 

3.2. LUTs 

Lookup Tables (LUTs) speed up character classification that relies on comparison. The 
classical example is function isalpha(char c), which returns true for lower and upper 
case ASCII characters (i.e., ‘a-z’ and ‘A-Z’) and false for everything else. Implemented 
directly, isalpha requires 4 comparisons per byte of text and the delimiters below need 
15 comparisons for each examined byte. The goal of LUTs is to replace all of this with a 
single lookup into a 256-byte array, which is small enough to fit in L1 cache and is often 
significantly faster than comparison. This homework requires two LUTs: 
// a-z, A-Z 
char isalphaLUT[256]; 
 
// delimiters: 0, space, comma, \n, \r, period, apostrophe (single quote),  
// double quote, ?, dash, colon, semicolon, *, !, and \t (tab) 
char isdelimiterLUT[256];  
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Note that the zero in this list is just the ASCII byte zero (also called NULL), not character 
‘0’ (ASCII 48). Each LUT is set up when the program begins and is shared between all 
search threads.  

3.3. Valid Words 

A word is considered valid by WordIsEligible() if the following two conditions hold: 

a) Its length is between MIN_WORD_LEN = 3 and MAX_WORD_LEN = 31. The limits are 
inclusive, i.e., [3, 31].  

b) It is preceded and followed by a delimiter (as given by isdelimiterLUT).  

The first rule avoids wasting energy on extremely short words, which are not often used 
in search queries (e.g., a, of), and extremely long words, which are usually not words at 
all (e.g., URLs, typos).  

The second rule avoids counting an almost infinite variety of words with numbers in 
them, email addresses, and various HTML markup (e.g., user345, a@b.com, <tag>). In 
combination with FindNextWordStart and FindThisWordEnd, all such cases are dis-
carded since the resulting word does not either begin or end with a delimiter. Be careful 
with the very first slot of the file as mb->buf [wordStart-1] will point to an uninitial-
ized portion of the shadow buffer if wordStart = 0. 

Also note that the LUTs above purposely split words with hyphens (e.g., auto-leveling, 
semi-final) and apostrophes (e.g., doesn’t, won’t) into multiple words. Differentiating 
these cases from non-words (e.g., he’s gone, it rained between August-December) re-
quires more work, which is beyond our scope. 

3.4. Buffer Boundaries 

The main issue here compared to homework #3 is that words may now be separated from 
their delimiters, in which case word eligibility is impossible to verify. Examine Figure 
2(a), where underscores denote spaces, and assume the longest word is L = 4 bytes. The 
last L bytes of buffer X are copied into the shadow buffer of Y. Since “file” starts beyond 
offset B-L-1 in X, homework #3 ignores it while scanning X. At the same time, Y also 
has to ignore the word because it has no way of verifying that it is preceded by a delim-
iter. Another case is shown in part b), where X correctly detects the word “file” using 
both delimiters, but Y has garbage at the start (i.e., “ile.”) that needs to be dealt with.  

file

_Blah 

a) 

ile.

this_is_a_ 
file. 

b) 

X Y 

detected by X, garbage in Y (incorrect) 

._Blah this_is_a 
_file 

ignored by both buffers (incorrect) 

 
Figure 2. Two cases of word splits across buffers. Underscore stands for space. 
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Two modifications are required compared to homework #3. First, Y must copy L+1 bytes 
(instead of L) from X. Second, Y must run FindThisWordEnd at the start of its shadow 
string to skip the remainder of any broken-apart words, for all slots except the very first 
one in the file. Figure 3 shows how these changes fix the problems in Figure 2.  

_file

_Blah 

a) 

file.

this_is_a_ 
file. 

b) 

X Y 

detected by X, ignored by Y (correct) 

._Blah this_is_a 
_file 

detected by Y, ignored by X (correct) 

 
Figure 3. Correct handling of boundaries. Underscore stands for space. 

3.5. Checkpoint #1 

Do not proceed any further until you have the portion explained above (sections 3.1-3.4) 
working properly on the tiny Wikipedia. Start with a buffer larger than the file and gradu-
ally shrink it to 212 bytes. If your code is correct, the buffer size should have no impact on 
the result and the count of (invalid, total) should match the traces below.  

3.6. Hash Function 

While many hash functions exist, few of them match the simplicity, randomness of out-
put, and speed of sbox (substitution box). The idea is to set up an LUT with 256 abso-
lutely random uint64 values and then pass each character through a mixing function: 
uint64 sboxLUT [256];   // initialize each value to a random 64-bit int 
uint64 h = 0;   // hash value 
uchar *word;    // pointer to word string 
 
for (i=0; i < wordLen; i++) 
 h = (h + sboxLUT [ word [i] ]) * 3;  // mixing function 

In order to produce the initial values for the sbox, use the Mersenne Twister (MT) gen-
erator from the course website. MT exhibits period 219997 and is four times faster than 
regular rand(). Its function genrand64_int64 generates 64-bit unsigned integers.  

The main caveat is that you have to modify the generated sbox LUT to be case-
insensitive, which is accomplished by simply equating its values for upper and lower US 
ASCII characters. While other hash functions require explicit conversion of the entire 
scanned text to lower-case (which reduces throughput by ~25% in this homework), sbox 
can perform both hashing and conversion in one operation.  

3.7. Affinity and Priority 

This program will be extremely demanding on the kernel file cache. Running at 900+ 
MB/s, the kernel will not have enough time to keep up with your search unless you care-
fully control the priority of your process and its threads. Set your entire process to the 
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idle class, search threads to the idle level within that class, and the disk thread to time-
critical. As before, set the affinity mask of search threads to bind them to unique cores, 
while allowing the disk/stats threads to migrate freely across all CPUs.  

3.8. Checkpoint #2 

Add the hash function to your previous checkpoint and examine the number of unique 
hashes it produces on the tiny file. Write all hashes into an array, sort them, and remove 
duplicates. Compare to the number of unique words in the traces below. If this works, 
benchmark the code on ts to ensure that your combined speed of finding valid words and 
hashing them is around 1.3 GB/s (193M wps) with 55% CPU utilization on 12 cores.  

4. Hash Table 
4.1. Overview 

A hash table accepts (key, value) pairs and stores them in some internal structure that al-
lows efficient addition/modification/deletion. Assume the keys are given by some uni-
formly random hash function and values are arbitrary chunks of data. In our case, the 
value will contain two fields: a DWORD counter and a NULL-terminated char string cor-
responding to the word, both packed into one contiguous space.  

Assume the hash table has H bins, where H is a power of two. To speed up modulo op-
erations, use bitwise AND with (H–1) to map keys to their bins. To manage collisions, 
hash tables normally create a chained list of items; however, this wastes a lot of memory 
with unnecessary overhead for each pointer and consumes time needed to pull free blocks 
from the heap. As our hash table only grows (i.e., supports insert, but not delete), a much 
more efficient design is possible using offsets into some large buffer.  

Assume each (key, value) pair is stored contiguously in some buffer char 
*mainHashBuf. As shown in Figure 4(a), each record stores not only the key, the counter, 
and the string, but also an integer field next specifying the offset (relative to the start of 
mainHashBuf) of the next item in the collision chain. Examine the hash table in Figure 
4(b) and assume that EOC (end of chain) is indicated by offset –1. The left side of the 
figure shows H = 4 bins in the hash table, three of which are occupied. The first bin 
points to offset 24, where “tea” is the only word with counter 3. The third bin points to 
two collided words – “machine” (counter 22) and “file” (counter 30). Finally, the last bin 
points to “furniture” with counter 2.  

 7



24 

–1 

0 

44 

a) 

b) 

key next offset 

uint64 DWORD int 

int *hash char *mainHashBuf 

70 22 machine 0 

-1 3 tea 0 

7AB6 

35B4 

-1 2 furniture 0 0177 

-1 30 file 0 7AB2 

counter string 0 

 
Figure 4. Packed hash table. 

To make the hash table universal, design it to operate with arbitrary values in the (key, 
value) pair, including cases when different values are mixed in the same hash table: 
HashTable *h = new HashTable (nBins);  // nBins = # of elements in array hash[] 
... 
bool found;  
uint64 hashKey;   // computed by sbox 
HashValue *hv = h->FindInsertKey (hashKey, valueSize, &found); 
if (found) 
 hv->counter ++; 
else 
 hv->counter = 1; 

memcpy (hv->GetWordPtr(), wordPtr, wordLen + 1); // +1 for the NULL 

In this homework, valueSize = sizeof(DWORD) + wordLen + 1 specifies the length 
of the value that we aim to insert. This parameter is ignored if the key is found; other-
wise, it is used to allocate a portion of mainHashBuf to store the key, the next offset, and 
the value. In both cases, FindInsertKey returns a (void *) pointer to the corresponding 
value inside mainHashBuf. Note that valueSize varies between each insertion and can-
not be determined statically during compile time. Also note that strings are not padded to 
max length and are stored densely packed with the keys and counters. 

In order to easily compute where to write the word, the HashValue class may provide 
function GetWordPtr whose usage is shown in memcpy above: 
class HashValue { 
public:  
 DWORD counter; 
 char* GetWordPtr (void) { return (char*)(this + 1); } 
}; 

4.2. Chain Search 

If you are using the 64-bit Mersenne Twister, there will be no two words in Wikipedia 
with the same hash. Therefore, it is sufficient to compare hashes during traversal of colli-
sion chains. If this were not the case, you would also have to run strcmp on the entire 
string after a matching hash is found.  

4.3. Growth of MainHashBuf 
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When the main buffer hit its allocation limit, prior homework doubled the buffer size and 
copied the old buffer into the new location. This homework requires the usage of virtual 
memory to expand existing buffers in place. Since offsets are signed integers in the above 
architecture, the largest possible buffer size is 231 bytes (i.e., 2GB). Use VirtualAlloc to 
reserve this much space when the hash table is started and then incrementally expand 
commit portions as needed. Each increment should be around 1 MB in size. 

4.4. Aux Hash Functions 

In order to keep track of traversal depth and the number of unique items stored, you may 
need to store dedicated counters inside your hash table. You may also have to write a se-
rialization function that iterates through all items in an existing hash table and dumps 
pointers to them into a linear array of MyClass objects (discussed in section 2.1), which 
will be used later for sorting the words by their frequency.  

4.5. Checkpoint #3 

Before continuing, verify that your hash table works with artificially generated input 
(e.g., run a loop through all keys between 1 and N five times and verify that final count-
ers are correct) and when coupled with the word indexer from section 3. Using a single 
thread, your number of unique words and their individual counts (from the largest to the 
smallest) should match those shown in the handout. With H = 220 bins and disk buffer 
size 1 MB, single-threaded performance on enwiki-medium.txt should be 110 MB/s at the 
beginning, with a gradual reduction to 90 MB/s as the hash table gets larger. The average 
speed over the entire file should be around 95 MB/s or 14M wps.  

5. Multiple Threads 
5.1. Hash Table Design 

In order to parallelize the hash table, we next consider several obvious choices. First, 
having a centralized hash table and locking a global critical section (CS) upon each ac-
cess is clearly inefficient as it prevents threads from concurrently updating multiple sec-
tions of the table. This leads to the second idea of providing a separate CS for each bin 
since it is perfectly acceptable to allow threads to perform unsynchronized updates to 
chains that start in different bins (except the relatively rare cases that require allocation of 
new virtual memory). However, this is quite inefficient in terms of RAM (i.e., 40 bytes 
per CS) and requires a CS lock/unlock per lookup. Since critical sections max out at 
around 15M/sec, it will be impossible to reach hashing rates above 100 MB/s no matter 
how many CPUs are employed, which isn’t any faster than 1 CPU without mutexing.  

Third, leveraging the fact that approximately 99.5% of lookups in this homework are up-
dates to existing items, it might be tempting to simply interlock on increments of the 
counter and lock CS only when adding new items. However, interlocked operations max 
out at 22M/s and also fail to offer noticeable improvement over the single-threaded ver-
sion. As the goal is to achieve lookup rates close to 100M/s, this direction leads nowhere. 

Instead, your job is to design alternative concurrency mechanisms that will allow the 
search speed to scale from 95 MB/s on a single core to around 900 MB/s on 12 cores. 
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While sublinear, this speed-up is still quite significant, especially considering that the OS 
cache will now be taking up a noticeable fraction of the total CPU utilization.  

5.2. Lower-Casing Words 

Since the output must be in lower case, you can set up another LUT that performs this 
operation. This should be much faster than C-style tolower(). You can do this conver-
sion prior to insertion into the hash table (i.e., once for each unique word). The logic is 
simple: 
for (int i=0; i < wordLen; i++) 
 word[i] = toLowerLUT [word[i]]; 

5.3. Counters with RAM Proximity 

You should also be careful about implicit synchronization done at the CPU level. Recall 
that the CPU cache line is commonly 64 bytes. This means any memory modification 
within the cache line automatically invalidates all 64 bytes and requires writing of de-
pendent cache lines back to RAM. This problem can be noticed when searching with two 
threads becomes significantly slower than with one thread. Here is an example that puts 
shared variables too close to each other and incurs a huge performance hit: 
DWORD counter [MAX_THREADS];   // shared stats 
DWORD WINAPI Thread (LPVOID param) 
{ 
 ThreadParams *p = (ThreadParams*) param; 
 // threads write into different locations, but  

// nonetheless interfere with each other 
for (int i=0; i < 1e9; i++) 

counter [p->threadID]++;  
} 

It is a good idea to keep local counters truly local, i.e., in the stack of the thread that uses 
them. The compiler guarantees that stacks are separated at least by one guard page from 
each other, so this problem can never arise in those cases. 

6. Traces 
All traces except the last one were produced on a 12-core computer identical to TS using 
B = 1 MB, N = 24 slots, and H = 218 bins.  

6.1. Tiny 
Merge delay: 15 ms 
Execution time: 0.13 sec, 417.3 MB/s, 63.9M wps 
 
Unique:  183,733 
Invalid: 2,011,115 
Total:  7,990,856 
 
[0] the = 537,100 
[1] and = 215,318 
[2] for = 58,256 
[3] was = 57,294 
[4] that = 52,341 
[5] with = 49,599 
[6] are = 37,555 
[7] from = 37,186 
[8] his = 29,874 
[9] which = 27,107 
... 
[55,765] zsu = 4 
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[55,766] zugzwang = 4 
[55,767] zulfikar = 4 
[55,768] zurlauben = 4 
[55,769] zvonimir = 4 
[55,770] zygomatic = 4 
[55,771] zygomorphic = 4 
[55,772] aacc = 3 
[55,773] aachener = 3 
[55,774] aalst = 3 
[55,775] aamir = 3 
[55,776] aankhen = 3 
... 
[183,725] zyklus = 1 
[183,726] zylom = 1 
[183,727] zymogen = 1 
[183,728] zynoviy = 1 
[183,729] zyperns = 1 
[183,730] zytologie = 1 
[183,731] zyvex = 1 
[183,732] zzt = 1 

6.2. Small 
Merge delay: 62 ms 
Execution time: 0.67 sec, 800.1 MB/s, 122.3M wps 
 
Unique:  757,198 
Invalid: 20,783,246 
Total:  82,053,136 
 
[0] the = 5,461,246 
[1] and = 2,177,629 
[2] was = 639,701 
[3] for = 598,874 
[4] that = 514,966 
[5] with = 504,154 
[6] from = 377,942 
[7] are = 344,274 
[8] his = 318,873 
[9] which = 262,581 
... 
[68,695] zel = 26 
[68,696] zeller = 26 
[68,697] ziebach = 26 
[68,698] zingiberales = 26 
[68,699] ziusudra = 26 
[68,700] zofia = 26 
[68,701] zpass = 26 
[68,702] zusatzartikel = 26 
[68,703] abbreviators = 25 
[68,704] abeceda = 25 
[68,705] abelianization = 25 
[68,706] abildgaard = 25 
[68,707] abiogenesis = 25 
[68,708] ablution = 25 
[68,709] acharnians = 25 
[68,710] acquis = 25 
... 
[757,191] zzuks = 1 
[757,192] zzul = 1 
[757,193] zzum = 1 
[757,194] zzurf = 1 
[757,195] zzw = 1 
[757,196] zzx = 1 
[757,197] zzzzzzzzzzzz = 1 

6.3. Medium 
[22.9%] 988.8 MB/s, words 300.9M, depth (1.069, 11), [CPU 99% 159 MB] 
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[44.5%] 930.2 MB/s, words 581.6M, depth (1.088, 14), [CPU 100% 228 MB] 
[65.4%] 904.5 MB/s, words 849.3M, depth (1.104, 17), [CPU 100% 288 MB] 
[85.8%] 879.8 MB/s, words 1104.5M, depth (1.119, 19), [CPU 100% 340 MB] 
 
Merge delay: 390 ms 
Execution time: 9.86 sec, 875.8 MB/s, 130.0M wps 
 
Unique:  4,871,639 
Invalid: 332,772,578 
Total:  1,281,459,881 
 
[0] the = 81,010,395 
[1] and = 33,426,873 
[2] was = 12,376,966 
[3] for = 9,800,783 
[4] with = 7,883,270 
[5] that = 6,276,909 
[6] from = 6,109,511 
[7] his = 5,478,788 
[8] are = 3,841,174 
[9] were = 3,414,079 
... 
[707,102] zygrot = 13 
[707,103] zyll = 13 
[707,104] zymoetz = 13 
[707,105] zypper = 13 
[707,106] aabideen = 12 
[707,107] aabt = 12 
[707,108] aaion = 12 
[707,109] aakaash = 12 
[707,110] aalavandhan = 12 
... 
[4,871,632] zzzzyzzerrific = 1 
[4,871,633] zzzzzou = 1 
[4,871,634] zzzzzzt = 1 
[4,871,635] zzzzzzzzzztt = 1 
[4,871,636] zzzzzzzzzzz = 1 
[4,871,637] zzzzzzzzzzzzzzzoop = 1 
[4,871,638] zzzzzzzzzzzzzzzzzzz = 1 

6.4. Complete (reading from RAID, 16 cores) 
[5.5%] 835.8 MB/s, words 258.9M, depth (1.051, 10), [CPU 91% 158 MB] 
[11.8%] 949.0 MB/s, words 552.0M, depth (1.065, 12), [CPU 96% 227 MB] 
[18.5%] 1004.6 MB/s, words 862.9M, depth (1.073, 13), [CPU 97% 285 MB] 
[25.2%] 1018.7 MB/s, words 1175.7M, depth (1.077, 14), [CPU 96% 334 MB] 
[31.9%] 1008.8 MB/s, words 1485.2M, depth (1.079, 15), [CPU 93% 378 MB] 
[38.3%] 971.6 MB/s, words 1779.5M, depth (1.082, 16), [CPU 90% 418 MB] 
[44.6%] 957.4 MB/s, words 2068.4M, depth (1.084, 17), [CPU 89% 457 MB] 
[51.2%] 998.8 MB/s, words 2365.6M, depth (1.087, 18), [CPU 91% 497 MB] 
[57.4%] 925.5 MB/s, words 2640.4M, depth (1.090, 18), [CPU 87% 527 MB] 
[63.1%] 875.1 MB/s, words 2897.7M, depth (1.092, 20), [CPU 85% 557 MB] 
[68.8%] 851.6 MB/s, words 3147.5M, depth (1.094, 20), [CPU 84% 581 MB] 
[74.4%] 856.5 MB/s, words 3399.7M, depth (1.095, 20), [CPU 85% 606 MB] 
[80.8%] 955.9 MB/s, words 3680.8M, depth (1.096, 21), [CPU 90% 631 MB] 
[87.3%] 983.6 MB/s, words 3970.2M, depth (1.097, 21), [CPU 86% 659 MB] 
[93.9%] 996.2 MB/s, words 4262.0M, depth (1.099, 22), [CPU 88% 688 MB] 
[100.0%] 916.9 MB/s, words 4529.3M, depth (1.100, 22), [CPU 81% 714 MB] 
 
Merge delay: 828 ms 
Execution time: 33.31 sec, 907.9 MB/s, 136.0M wps 
 
Unique:  8,861,171 
Invalid: 1,343,711,978 
Total:  4,529,347,711 
 
[0] the = 219,389,160 
[1] and = 86,539,407 
[2] you = 52,970,534 
[3] that = 43,748,250 
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[4] for = 41,742,832 
[5] this = 31,341,779 
[6] wikipedia = 29,056,199 
[7] was = 25,953,578 
[8] not = 25,157,584 
[9] with = 22,376,657 
... 
[1,125,429] zzedar = 13 
[1,125,430] zzuzu = 13 
[1,125,431] zzy = 13 
[1,125,432] zzyxx = 13 
[1,125,433] zzzptm = 13 
[1,125,434] aaaaaaaaaah = 12 
[1,125,435] aaaaaahhh = 12 
[1,125,436] aaaaahh = 12 
[1,125,437] aaaack = 12 
[1,125,438] aaabbb = 12 
... 
[8,861,170] zzzzzzzzzzzzzzzzzzzzzzzzzz = 1 
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313 Homework 4 Code 
 
Name: ______________________________ 
 
 

 Points Break 
down 

Item Points 

5 Lookup tables  
2 FindNextWordStart  
2 FindWordEnd  
2 WordIsEligible  

Basic Code 
Structure 

15 

4 Compute hash value  
3 Packed  
2 Parallelization  
2 Merge  

Hash Table 10 

3 VirtualAlloc  
5 Small file  

5 Medium file  
Indexing Files 15 

5 Large file  

2 % done  
2 Current speed  
2 # of words  
2 Depth (average & max)  

Stats Printed 10 

2 CPU & RAM usage  
10 Crash or deadlock  
5 Use STL   
5 Hardwired parameters  
5 Speed 100~800MB/sec (12 cores)  
10 Speed < 100MB/sec (12 cores)  
10 Cannot do multiple threads  

Others  25 

   

 
 
Code points: ________________ 
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313 Homework 4 Report 
 

Points Item Points 
5 Run your code on all four versions of Wikipedia. Show 

top 20 words and 5000-5020 words. Discuss how you 
break ties and anything interesting 

 

5 Explain your design for the parallel hash table. Plot run-
ning speed vs. # of cores. Determine the optimal # of 
bins H 

 

5 Examine the average word length in each of the four 
datasets. Plot word length distribution for large Wikipe-
dia file 

 

10 Plot word frequency f against rank r, show that it follows 
Zipf's law. Add trend line and show it's function. 

 

 
 
Report points: __________________ 
 
 


