CSCE 313-200

Introduction to Computer Systems
Spring 2024

Memory

Dmitri Loguinov
Texas A&M University

April 12, 2024




Quiz 5

« \Write proper synchronization for a train tunnel

Train
TryEnteringTunnel (int dir) {
mutex[dir].Lock();

if (trains[dir]++ == 0)
occupied.Wait();

mutex[dir].Unlock(); crash 1

semaMaxN._Wait();

PassThruTunnel (x, dir);
semaMaxN.Release();

mutex[dir].Lock();

if (--trains[dir] == 0)
occupied.Release();

mutex[dir].Unlock();




Hw3

* Why was homework #3 so inefficient?
l keyword list

apple looking at ‘Z’, no
ext [Z|B|C|Q|A|B| bamane _— PO
— _ mango ’

e banana, mango
hash H zebra

» |dea: do not compare current byte to all strings, only to
those that can potentially be a match

« Rabin-Karp (RK), 1987
- Assume M is the smallest keyword length
- Compute a hash H of the next M chars from current location
- Hit a hash table, compare with words that tie for that hash
- Speed is only based on the length of collision chains




Hw3

example with M =3, B=10 —

 After hash table lookup, slide by one byte forward,
recompute the hash of the next M chars

text | Z|B|C|Q|A|B 3/5(7]18|2|4
) has;:H0 J k HO=357 J
has;;H1 H, =V578

* Notice that M-1 chars are the same in both hashes
- Main twist of the algorithm is to use a rolling hash, which
obtains H,,, from H, in O(1) time
* Treating hashes as base-B integers, we have
- H, = str[0] * BM-1 + str[1] * BM-2+...+ str[M-1]
- H,, = (H * B + str[i+M]) % BV




Hw3

« Larger M means fewer collisions and faster operation
« With M =3 and 216K strings, RK runs at 20MB/s

- 2000 times faster than the naive method
 Indexing a file with unknown keywords is slightly

different, but the idea is similar to RK
- Homework #4 explores this in more detail

« Main goal is to design code that processes all 4.5B
words in large Wikipedia in ~35 sec (135M wps)

- 3.7M times faster than the method in homework #3

 Homework #4 has 3 checkpoints
- The first two should be done early
- Checkpoint #3 is more complex, uses virtual memory




Chapter 7: Roadmap

/.1 Requirements Part IlI

7.2 Partitioning
7.3 Paging

7.4 Segmentation
7.5 Security




Requirements

Main memory services of the OS:
* 1) Dynamic allocation/deletion

e 2) Process & data relocation

- Transparent fragmentation of
process data/code within RAM
and swapping to disk as needed

Memory manager,

» 3) Protection address virtualization,
- No unauthorized access to space hardware support
of other processes
* 4) Sharing
- Ability to map portions of RAM

between different processes Y,




Chapter 7: Roadmap

/.1 Requirements
(.2 Partitioning
7.3 Paging

7.4 Segmentation
7.5 Security




Memory Management

« Memory allocation is a complex problem
- We examine only the most basic approaches

« Partitioning: type of RAM segmentation into blocks
« Placement: actual block allocation algorithms

Partltlonlng Dynamic Placement

| |
Scanning Buddy
Variable-size Variable-size many other allocators
blocks blocks are not covered here

Constant-S|ze

blocks
OS paging heap

Note: memory heaps have nothing to do.with priority queues 9



OS Partitioning

Static partitioning defines block boundaries a-priori

- Process may hold any
number of blocks, which may
appear to it as contiguous space

- Mapping done in hardware

Suffers from internal
fragmentation

Blocks may be of constant
or variable size

- For simplicity, most kernels
have constant-size blocks time t, time t,
called pages

Each page must be a power of 2 (usually 4 KB) 10

P4

HE



Heap Partitioning

« Tweaking virtual-page tables is slow and a privileged
operation; allocation rounded to nearest page size

« |dea: add memory management to user space that
can satisfy small buffer request with less overhead

« Dynamic partitioning (heap) U buf3
grabs pages from the OS,
then splits them into smaller
chunks in user space

- Much faster, but leads to
external fragmentation buf2

* More difficult to manage due to m

|

variable-size blocks

time t, timet, 11



void T (void) {
int a; // on the stack
// ptr on the stack, buffer on the heap

L
Heag Allocatlon char *buf = new char [100];
// ptr on the stack, buffer from the kernel

char *0Sbuf = VirtualAlloc (...);

 Memory is typically e Scanning
allocated from: — Linearly search through RAM
- Stack (local variables) (or list of blocks) to find empty

— Heap (new/malloc) blocks to allocate

- OS (VirtualAlloc) » Search types:
- First fit: scans from start

- Best fit: finds the smallest free
block that satisfies the request

- Next fit: searches from the last
allocation forward

program » os | * E.g., Unix SLOB allocator for
heap | simple (embedded) devices

12

 We are now
concerned with heap

— OS issues covered in
later lectures




	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Quiz 5
	Hw3
	Hw3
	Hw3
	Chapter 7: Roadmap
	Requirements
	Chapter 7: Roadmap
	Memory Management
	OS Partitioning
	Heap Partitioning
	Heap Allocation

