
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

MemoryMemory
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 12, 2024April 12, 2024



2

•
 

Write proper synchronization for a train tunnel

Quiz 5Quiz 5Quiz 5

Train
TryEnteringTunnel (int dir) {

mutex[dir].Lock();
if (trains[dir]++ == 0)

occupied.Wait();
mutex[dir].Unlock();

semaMaxN.Wait();
PassThruTunnel(x, dir);
semaMaxN.Release();

mutex[dir].Lock();
if (--trains[dir] == 0)

occupied.Release();
mutex[dir].Unlock();

}

Train
TryEnteringTunnel (int dir) {

mutex[dir].Lock();
if (trains[dir]++ == 0)

occupied.Wait();
mutex[dir].Unlock();

semaMaxN.Wait();
PassThruTunnel(x, dir);
semaMaxN.Release();

mutex[dir].Lock();
if (--trains[dir] == 0)

occupied.Release();
mutex[dir].Unlock();

}

OK

crash



3

•
 

Why was homework #3 so inefficient?

•
 

Idea: do not compare current byte to all strings, only to 
those that can potentially be a match

•
 

Rabin-Karp
 

(RK), 1987
━

 

Assume M is the smallest keyword length
━

 

Compute a hash H of the next M chars from current location
━

 

Hit a hash
 

table, compare with words that tie for that hash
━

 

Speed is only based on the length of collision chains

Hw3Hw3Hw3

ZZ BB CC QQ AA BBtext
keyword list

 
apple

 
banana

 
mango

 
zebra

 
…

looking at ‘z’, no 
need to attempt a 
match to apple, 
banana, mango

hash H



4

•
 

After hash table lookup, slide by one byte forward, 
recompute the hash of the next M chars

•
 

Notice that M-1 chars are the same in both hashes
━

 

Main twist of the algorithm is to use a rolling hash, which 
obtains Hi+1

 

from Hi

 

in O(1) time
•

 
Treating hashes as base-B integers, we have
━

 

H0

 

= str[0] * BM-1

 

+ str[1] * BM-2

 

+…+ str[M-1]
━

 

Hi+1

 

= (Hi

 

* B + str[i+M]) % BM

Hw3Hw3Hw3

ZZ BB CC QQ AA BBtext

hash H0

hash H1

H0 = 357

H1

 

= 578

33 55 77 88 22 44

example with M = 3, B = 10



5

•
 

Larger M means fewer collisions and faster operation
•

 
With M = 3 and 216K strings, RK runs at 20MB/s
━

 

2000 times faster than the naïve method
•

 
Indexing a file with unknown keywords is slightly 
different, but the idea is similar to RK
━

 

Homework #4 explores this in more detail
•

 
Main goal is to design code that processes all 4.5B 
words in large Wikipedia in ~35 sec (135M wps)
━

 

3.7M times faster than the method in homework #3
•

 
Homework #4 has 3 checkpoints 
━

 

The first two should be done early
━

 

Checkpoint #3 is more complex, uses virtual memory

Hw3Hw3Hw3



6

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security

Part III
Chapter 7: MemoryChapter 7: Memory
Chapter 8: Virtual RAMChapter 8: Virtual RAM



7

Main memory services of the OS:
•

 
1) Dynamic allocation/deletion

•
 

2) Process & data relocation
━

 

Transparent fragmentation of 
process data/code within RAM 
and swapping to disk as needed

•
 

3) Protection
━

 

No unauthorized access to space 
of other processes

•
 

4) Sharing
━

 

Ability to map portions of RAM 
between different processes

RequirementsRequirementsRequirements

Memory manager, 
address virtualization, 

hardware
 

support



8

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security



9

•
 

Memory allocation is a complex problem
━

 

We examine only the most basic approaches
•

 
Partitioning: type of RAM segmentation into blocks

•
 

Placement:
 

actual block allocation algorithms

Memory ManagementMemory ManagementMemory Management

Dynamic PlacementDynamic Placement

ScanningScanning BuddyBuddy

many other allocators 
are not covered here

PartitioningPartitioning

StaticStatic DynamicDynamic

Constant-size

 
blocks

 

Constant-size

 
blocks

Variable-size

 
blocks

 

Variable-size

 
blocks

Variable-size

 
blocks

 

Variable-size

 
blocks

OS paging heap

Note: memory heaps have nothing to do with priority queues



10

•
 

Static
 

partitioning defines block boundaries a-priori
━

 

Process may hold any 
number of blocks, which may 
appear to it as contiguous space

━

 

Mapping done in hardware
•

 
Suffers from internal

 fragmentation
•

 
Blocks may be of constant

 or variable size
━

 

For simplicity, most kernels
 have constant-size blocks

 called pages
•

 
Each page must be a power of 2 (usually 4 KB)

OS PartitioningOS PartitioningOS Partitioning

P1P1
P1P1

P2P2

P2P2

time t1

P3P3
P4P4

P3P3

P2P2

time t2



11

•
 

Tweaking virtual-page tables is slow and a privileged 
operation; allocation rounded to nearest page size

•
 

Idea: add memory management to user space that 
can satisfy small buffer request with less overhead

•
 

Dynamic
 

partitioning (heap) 
grabs

 
pages from the OS, 

then
 

splits them into smaller 
chunks in user space
━

 

Much faster, but leads
 

to 
external fragmentation

•
 

More difficult to manage due to 
variable-size blocks

Heap PartitioningHeap PartitioningHeap Partitioning

buf3buf3

buf4buf4

time t2

buf6buf6

buf5buf5

buf2buf2

time t1

buf1buf1



12

•
 

Memory is typically 
allocated from: 
━

 

Stack (local variables)
━

 

Heap (new/malloc)
━

 

OS (VirtualAlloc)
•

 
We are now 
concerned with heap
━

 

OS issues covered in 
later lectures

Heap AllocationHeap AllocationHeap Allocation

•
 

Scanning
━

 

Linearly search through RAM 
(or list of blocks) to find empty 
blocks to allocate

•
 

Search types:
━

 

First fit: scans from start
━

 

Best fit: finds the smallest free 
block that satisfies the request

━

 

Next fit: searches from the last 
allocation forward

•
 

E.g., Unix SLOB allocator for 
simple (embedded) devices

void f (void) {
int a; // on the stack
// ptr on the stack, buffer on the heap
char *buf = new char [100]; 
// ptr on the stack, buffer from the kernel
char *OSbuf = VirtualAlloc (...); 

}

void f (void) {
int a; // on the stack
// ptr on the stack, buffer on the heap
char *buf = new char [100]; 
// ptr on the stack, buffer from the kernel
char *OSbuf = VirtualAlloc (...); 

}

programprogram

heapheap
OSOS


	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Quiz 5
	Hw3
	Hw3
	Hw3
	Chapter 7: Roadmap
	Requirements
	Chapter 7: Roadmap
	Memory Management
	OS Partitioning
	Heap Partitioning
	Heap Allocation

