CSCE 313-200

Introduction to Computer Systems
Spring 2024

Deadlocks

Dmitri Loguinov
Texas A&M University

March 8, 2024

Chapter 6: Roadmap

6.1 Principles Part Il
6.6 Dining philosophers
6.2 Prevention

6.3 Avoidance

6.4 Detection

6.5 Integrated strategies
6.7 Unix

6.8 Linux

6.9 Solaris

6.10 Windows

Chapter 6: Deadlocks

ThreadP (O { ThreadQ O {
. . mutexA.Lock(); mutexB.Lock();
Prl nCI Ies mutexB.Lock(); mutexA.Lock();

‘! // critical section // critical section
mutexA.Unlock(); mutexB.Unlock();
mutexB.Unlock(); mutexA.Unlock();

¥ ¥

« Deadlock is a permanent (infinite) wait for resources
- Important problem in the field of synchronization

« Typical example with threads P and Q:
- Two mutexes locked in different order
- Common source of deadlocks

* Another example:

CarNorth (O {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

Principles

« Example (cont'd): deadlock possible in general and...
- Certain when each grabs their first mutex:

« Conditions for a deadlock
to be possible
- 1) Mutual exclusion (no sharing)

- 2) Hold and wait (allowed to hold one
resource and wait for another, i.e.,
acquisition of multiple mutexes is not atomic)

- 3) No preemption (held resources not released until critical
section has been successfully completed)

 Conditions for it to be certain
- 1)-3) plus 4) circular wait

Progress Diagram

 Assume two threads P and Q in parallel execution
- Denote by t the absolute time

- Progress diagram is a 2D parametric curve (x(t),y(t)) where
X(t) is the number of instructions executed by Q and y(t) by P
thread P X, Y, Z
timeline !
prints Z "““""““"““““““’E """""
; Y, X
prints X -—--------- f
Curves must be :
monotonically
non-decreasing in | > threaq o
timeline

both axes

prints Y

Progress Diagram

« Back to our example with P and Q

« Mutexes place L-shaped obstacles/barriers on the
progress diagram that cannot be crossed

P safe

ThreadP () { "

mutexA.Lock();

mutexB.Lock();

// critical section B.unlock +

mutexA.Unlock(); |

mutexB.Unlock(); A.unlock
3
ThreadQ) { B.lock

mutexB.Lock();
mutexA.Lock();
// critical section A.llock ——---o=emm- N
mutexB.Unlock(Q); i
mutexA.Unlock();

; B ——Q
B.lock “A.lock B.unlock
A.unlock

Progress Diagram

P A

* In three quadrants B-unlock—- T
A =1 A | k__ """"""""""""" N - ----------------- (R — Lo

near the origin, Ses -

deadlock possible o
. : B.lock o------------ S S

- In one, it is certain > e S p— ﬂ
* All other sections Addock Jmoceeeroeonen e =

fe possible i p033|blei i i

dlre sa i | |

| |
— Except impossible Block A.lock B.unlock Q

states behind barriers A.unlock

« Static or dynamic analysis to detect deadlocks
« What happens with N threads?

- N-dimensional diagram

PA

Progress Diagram

 How about
these diagrams?

* |n what order are — 9
mutexes acquired?

- Write pseudo code for P/Q
F) A

B WD ‘W

Resource Allocation Graph

* To visualize deadlocks, often a graph is drawn between
all threads and resources

- Edges of this bipartite graph are labeled with “held by”
(resources - threads) and “wants” (threads - resources)

« If this directed graph has a cycle, there is a deadlock
- Car labels (N, E, W, S) map to North/East/West/South position

wants

v
A — B k— C — D resources
l heldlby l J
2o b= g 2o = threads

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 6: Roadmap
	Principles
	Principles
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Resource Allocation Graph

