
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

DeadlocksDeadlocks
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 8, 2024March 8, 2024

2

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks

3

•

Deadlock is a permanent (infinite) wait for resources
━

Important problem in the field of synchronization
•

Typical example with threads P and Q:
━

Two mutexes locked in different order
━

Common source of deadlocks
•

Another example:

PrinciplesPrinciplesPrinciples
ThreadP () {

mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

A

C

B

D

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

}

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}

CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}

4

•

Example (cont’d): deadlock possible

in general and...
━

Certain

when each grabs their first mutex:
•

Conditions for a deadlock

 to be possible
━

1) Mutual exclusion (no sharing)
━

2) Hold and wait (allowed to hold one
resource and wait for another, i.e.,
acquisition of multiple mutexes is not atomic)

━

3) No preemption (held resources not released until critical
section has been successfully completed)

•

Conditions for it to be certain
━

1)-3) plus 4) circular wait

PrinciplesPrinciplesPrinciples

A

C

B

D

5

•

Assume two threads P and Q in parallel execution
━

Denote by t the absolute time
━

Progress diagram

is a 2D parametric curve (x(t),y(t)) where
x(t) is the number of instructions executed by Q and y(t) by P

Progress DiagramProgress DiagramProgress Diagram

thread Q
timeline

thread P
timeline

prints Y

prints X

prints Z

Curves must be
monotonically

non-decreasing in
both axes

X, Y, Z

Y, X

6

•

Back to our example with P and Q
•

Mutexes

place

L-shaped

obstacles/barriers on the

progress diagram that cannot be crossed

Progress DiagramProgress DiagramProgress Diagram

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

B.lock

B.unlock

B.lock B.unlock
A.unlock

A.lock

A.lock

A.unlock

safe

safe

P

Q

7

•

In three quadrants
near the origin,
deadlock possible
━

In one, it is certain
•

All other sections
are safe
━

Except impossible
 states behind barriers

•

Static or dynamic analysis to detect deadlocks
•

What happens with N threads?
━

N-dimensional diagram

Progress DiagramProgress DiagramProgress Diagram

A.lock

B.lock

A.unlock
B.unlock

A.lockB.lock
A.unlock

B.unlock

possible possible

possible certain

safe?

P

Q

8

•

How about
these diagrams?

•

In what order are
mutexes acquired?
━

Write pseudo code for P/Q

Progress DiagramProgress DiagramProgress Diagram
P

Q

P

Q

P

Q

9

•

To visualize deadlocks, often a graph is drawn between
all threads and resources
━

Edges of this bipartite graph are labeled with “held by”
 (resources threads) and “wants”

(threads resources)

•

If this directed graph has a cycle, there is a deadlock
━

Car labels (N, E, W, S) map to North/East/West/South position

Resource Allocation GraphResource Allocation GraphResource Allocation Graph

AA BB CC DD resources

threads

wants

held by

N E W S

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 6: Roadmap
	Principles
	Principles
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Resource Allocation Graph

