
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

File System IIIFile System III
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 27, 2025March 27, 2025



2

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering 
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows



3

•
 

Redundant Array of 
Inexpensive

 
Disks (RAID)

━

 

Nowadays “I”
 

is Independent
•

 
RAID-0 (striping)
━

 

Non-redundant sequential 
writing to all disks

━

 

Goes in units of
 

some fixed 
block size (e.g., 64 KB)

━

 

R/W speed N*S for N disks
━

 

Any failure renders array 
unusable, all data lost

•
 

RAID-1 (mirroring)
━

 

One spare for each disk

RAIDRAIDRAID

•
 

RAID-1 (cont’d)
━

 

R/W speed N*S/2
━

 

Tolerates single disk 
failure, may survive up 
to N/2 failures, but may 
also crash with just 2

0
2
4
6

0
2
4
6

1
3
5
7

1
3
5
7

RAID-1

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

RAID-0



4

•
 

RAID-2 and 3
━

 

Require synchronized disks
━

 

Not popular
 

in
 

practice
•

 
All RAID levels 4+ compute 
block/stripe parity
━

 

Usually an XOR of all blocks
━

 

Failure of a disk allows 
recovery of block by XORing 
parity with remaining blocks

•
 

RAID-4
━

 

Bottlenecks on parity disk (e.g., 
modification of blocks 2 and

 
6 

cannot proceed in parallel)

RAIDRAIDRAID

•
 

RAID-5 
━

 

Parity split over all disks
━

 

Read speed S*(N-1)
━

 

Tolerates failure of any 
single disk, crashes if 2 
or more fail concurrently

9
P6-8

P9-11

RAID-5

0
3
6

11

1
4

87
10

P3-5

2
5

P0-2

0
3
6
9

1
4
7
10

2
5
8
11

P0-2

P3-5
P6-8

P9-11

RAID-4



5

•
 

RAID-6
━

 

Dual parity, read speed S*(N-2)
━

 

Tolerates failure of any 2 disks, 
crashes if 3 or more fail

━

 

On some cards, write
 

speed 
30% slower than RAID-5

•
 

RAID-XY or X+Y
━

 

Several RAID-X arrays 
organized into a RAID-Y

•
 

Windows also offers a 
spanned

 
volume in software

━

 

Writes to one disk until full, then 
switches to the next 

RAIDRAIDRAID

RAID-50

RAID-5 RAID-5

RAID-0

6
P4-5

P6-7

RAID-6

0
2

Q4-5
Q6-7

1
Q2-3

54
7

P2-3

Q0-1

3
P0-1

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15



6

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering 
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows



7

•
 

In caching, the main issue is achieving high hit rates
•

 
Classical LRU (Least Recently Used)
━

 

Evict the item that hasn’t been used the longest
•

 
In practice, doubly-linked queue/list is enough
━

 

Most-recent items inserted at the tail, old evicted at the head

Disk CacheDisk CacheDisk Cache

insertion of 
B evicts Z

A is accessed, 
moves to front 
of list, nobody 

evicted

•
 

How to quickly find accessed 
item in the queue?
━

 

Linear scanning is slow

XX AA ZZ

oldestnewest

tail head

BB XX AA

oldestnewest

tail head

AA BB XX

oldestnewest

tail head



8

•
 

Idea: maintain a hash table that stores a pointer to the 
item’s location in the queue/list

•
 

How to update the hash table during eviction?
━

 

Either look up item in hash table or store a reverse pointer

Disk CacheDisk CacheDisk Cache

ZZ

AA XX

……

……

……

……

hash table

ptrptr ptrptr …… ptrptr
LRU queue/list

no need to store items in both hash table and LRU queue



9

•
 

Age and frequency of usage may not be related
━

 

More accurate method may be LFU (Least Frequently Used)
━

 

Assign counter C to items, how often it has been accessed
━

 

Sort items by C, evict the one with the smallest counter
•

 
Requires a min-heap ordered by access counters

Disk CacheDisk CacheDisk Cache

ZZ

AA XX

……

……

……

……

hash table

5, ptr5, ptr 7, ptr7, ptr

……

1, ptr1, ptr

……

heap



10

•
 

LFU complexity
━

 

O(1) for cache hit, logN for reinsertion (existing item)
━

 

O(1) for cache miss, logN for eviction (new item)
•

 
Could also use a balanced binary search tree
━

 

Left-most child is always evicted
•

 
Another

 
approach: organize 

counters into doubly-linked list
━

 

Each counter has a list of nodes 
that tie for their value of C

━

 

Nodes contain pointers to actual items
 which are part of the hash table as before

•
 

Constant-time access/insertion/eviction

Disk CacheDisk CacheDisk Cache

ptr to Zptr to Z

ptr to Xptr to X ptr to Aptr to A

……

……

……

……

11 55 77
counter linked list



11

•
 

Problem #1:
 

LFU is biased against new items, which it 
may evict immediately after insertion
━

 

As an improvement, evict every K cache requests and use 
LRU within each linked list of nodes that have the same C

•
 

Problem
 

#2:
 

items with large counters
 stay virtually forever in the cache

━

 

Suppose an item gets
 

1M initial hits due 
to locality, but is never

 
needed again

━

 

It will not get evicted until C = 1M is 
the smallest counter in the heap/list

•
 

Goal: prevent fresh items from being immediately 
evicted and discount the importance of back-to-back 
access

Disk CacheDisk CacheDisk Cache



12

•
 

Hybrid LRU-LFU methods
━

 

Attempt to register only
 

long-term
 

usage
•

 
New section

 
is similar to LRU

━

 

Items move to the tail
 

on access, counters unchanged
━

 

Eviction moves from the head
 

to the old section

•
 

Old section
 

is similar to LFU, sorted by counter
━

 

Hits
 

increment
 

C
 

and move
 

item 
to

 
tail

 
of new

 
section

Disk CacheDisk CacheDisk Cache

ptrptr ptrptr …… ptrptr
new section C, ptrC, ptr C, ptrC, ptr

……

C, ptrC, ptr

……

old section

evicted

becomes old



13

•
 

Research suggests that the LFU (old) section is still 
biased against new blocks, evicts them right away

•
 

Solution:
 

create a middle section to build up counters
━

 

On hits,
 

middle-aged items increment counters and move
 

to
 the tail

 
of new section

━

 

When
 

item is old, its C should reflect its long-term usage

Disk CacheDisk CacheDisk Cache

ptrptr ptrptr …… ptrptr
new section C, ptrC, ptr C, ptrC, ptr

……

C, ptrC, ptr

……

old section

evicted

becomes old
C,ptrC,ptr C,ptrC,ptr …… C,ptrC,ptr

becomes middle-aged

middle section



14

Chapter 12: RoadmapChapter 12: RoadmapChapter 12: Roadmap

12.1 Overview
12.2 File organization
12.3 Directories
12.4 Sharing
12.5 Record blocking
12.6 Secondary storage
12.7 File security
12.8-12.10 Unix, Linux, Windows



15

•
 

As before, a file
 

is just a bunch of bytes
•

 
Our next task is to figure out how to organize these 
bytes within the file to enable ease of operation
━

 

Mostly concerned here with data lookup and retrieval
•

 
Assume data is split into items/records
━

 

Each record has multiple fields
 

(e.g., name, age, SSN)
•

 
1) Pile is the most general
━

 

Records dumped into file as they 
become available to the program, 
in no particular order, \n separator

━

 

Different records may have different 
length or # of fields, typically read by humans

━

 

e.g., Unix syslog file into which all kernel modules write

File OrganizationFile OrganizationFile Organization

error1

 

error1 driver1

 

driver1

error2

 

error2 driver2

 

driver2

RAMRAM CPUCPU

D1

 

D1

D2

 

D2

D3

 

D3



16

•
 

2) Sequential file
 

(sorted or unsorted)
━

 

One field in each record is the key, everything else is
 

value
━

 

Search for a given key or range
•

 
Fixed-size fields
━

 

E.g., payroll database with all fields padded to same size
•

 
Variable-size fields
━

 

E.g., graph (key = nodeID, 
value = degree +

 
adjacency list)

•
 

If sorted by key
━

 

If fixed-size values, binary
 

search to find records
━

 

If variable-size, need unambiguous record separators
━

 

Painful to add elements as resorting the file is expensive

File OrganizationFile OrganizationFile Organization

salary1

 

salary1 age1

 

age1

salary2

 

salary2 age2

 

age2

SSN1

 

SSN1

SSN2

 

SSN2

deg1

 

deg1 list1

 

list1
deg2

 

deg2 list2

 

list2

node1

 

node1

node2

 

node2



17

•
 

3) Indexed Sequential
━

 

File structure that has the main file
 

with data (usually huge) 
and a separate file containing the index

 
for keys

•
 

Suppose the main file is
 

Google’s wordURL
 

mapping
━

 

Query
 

maps
 

hashes of words to pages with them

•
 

Binary search on the index, find offset in main file

File OrganizationFile OrganizationFile Organization

650650

651651
offoff

300300

651651

main file (2 PB), not sorted

offoff

index

…

…

…

…

600600

22 url1

 

url1
6M6M

url2

 

url2
url1

 

url1 url2

 

url2 url3

 

url3 …… url6M

 

url6M

33 url1

 

url1 url2

 

url2 url3

 

url3

hash

hash



18

•
 

If index is too big to fit in RAM and binary search is 
inefficient, a k-level index is possible

•
 

Assume level-1 index size F, read I/O block size B
━

 

Binary
 

search needs
 

log2

 

(F/B) seeks
━

 

On the other hand, k-level
 

index needs
 

k-1 seeks
•

 
F = 10 TB file, B = 1 MB block size → 23 seeks, while 
multi-index above does it in k-1 = 2 seeks

File OrganizationFile OrganizationFile Organization

650650

651651
offoff

offoff

…

…
level-1: 10 TB

500500

600600
offoff

offoff

…

…
level-2: 100 GB

00

10001000
offoff

offoff

…
level-3: 10 GB 

fits in RAM

00 600600

B B



19

•
 

4) Indexed
━

 

Separate index for every possible field, allows database-like 
operations on fields

•
 

Main challenge
 

for indexed files is keeping the index 
updated when it doesn’t fit in RAM

•
 

5) Hashed file
━

 

Treat file contents as RAM, hash items directly to some offset

•
 

What to do with collisions?

File OrganizationFile OrganizationFile Organization

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}


	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 11: Roadmap
	RAID
	RAID
	RAID
	Chapter 11: Roadmap
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Chapter 12: Roadmap
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization

