
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

File SystemFile System
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 20, 2024March 20, 2024

2

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows

Part V
Chapter 11:

I/OChapter 11:

I/O
Chapter 12:

FilesChapter 12:

Files

3

•

I/O usually refers to
physical devices
━

Such as disk, network
card, printer, keyboard

•

Almost all components
 in the system do

I/O

━

Except RAM & CPU,
and possibly certain
chipsets built into the
motherboard

•

Transfer of data
between devices and
RAM thru DMA

I/O DevicesI/O DevicesI/O Devices
CoresCores L3 cacheL3 cache

RAMRAM

Slow I/O

USB

SATA

PCI-X

PCI

VGA

COM/LPT

Floppy

Slow I/O

USB

SATA

PCI-X

PCI

VGA

COM/LPT

Floppy

NorthbridgeNorthbridge

SouthbridgeSouthbridge
Fast I/O

PCI-E

AGP

RAID

Fast I/O

PCI-E

AGP

RAID

memory
controller

memory
controller

HyperTransportHyperTransport

Example: AMD Opteron

4

•

How fast is I/O compared
to RAM speed?
━

Usually slow, but it depends…
•

How to measure speed?
━

Kbps, Mbps, Gbps

refer to
bits/sec

━

KB/s, MB/s, GB/s refer
to bytes/sec

•

Use a notation with
K = 1000 bits/bytes

I/O DevicesI/O DevicesI/O Devices Keyboard/mouseKeyboard/mouse ~100 bytes/s~100 bytes/s
ModemModem 53 Kbps53 Kbps

FloppyFloppy 70 KB/s70 KB/s

CD-ROM 1xCD-ROM 1x 150 KB/s150 KB/s
EthernetEthernet 10 Mbps10 Mbps

Fast EthernetFast Ethernet 100 Mbps100 Mbps

Gigabit EthernetGigabit Ethernet 1 Gbps1 Gbps

Hitachi 2TB driveHitachi 2TB drive 150 MB/s150 MB/s

SSD hard driveSSD hard drive 500 MB/s500 MB/s

10G Ethernet10G Ethernet 10 Gbps10 Gbps

USB 1.0USB 1.0 1.5 MB/s1.5 MB/s

DVD-ROM 32xDVD-ROM 32x 4.7

MB/s4.7

MB/s

USB 2.0USB 2.0 60 MB/s60 MB/s

DDR2-667 RAMDDR2-667 RAM 5.3 GB/s5.3 GB/s

DDR4-3200 RAMDDR4-3200 RAM 90

GB/s90

GB/s
L2

cache (8 core)L2

cache (8 core) 500

GB/s500

GB/s

L1

cache (8 core)L1

cache (8 core) 1.5

TB/s1.5

TB/s

100G Ethernet100G Ethernet 100 Gbps100 Gbps

USB 3.0USB 3.0 600 MB/s600 MB/s

5

•

OS also allows certain IPC to be modeled as
communication with an abstract I/O device
━

Example: inter-process pipes, mailslots, network sockets
━

This explains why ReadFile is so universal
•

Our main focus here is on file I/O, but similar
principles apply to other types of devices
━

Just reading files is simple; however, achieving decent
speed and parallelizing computation is more challenging

•

Before solving this problem, we start with a general
background on files and APIs
━

Homework #3 requires multi-CPU searching of Wikipedia for
user-specified substrings

I/O DevicesI/O DevicesI/O Devices

6

•

Just like RAM, a file is a sequence of bytes
•

Supports 3 main operations: read, write, and seek

•

File pointer specifies the current position within the file
━

Read/write operations proceed from that location forward
•

Example: test.txt written in notepad:

━

Byte contents give by hex viewer (e.g., HxD)

•

What is the ASCII table?
━

Why is there 0xD and 0xA in the file?

Background on FilesBackground on FilesBackground on Files

This is a text file.
 Second line.

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

This is a text f
ile...Second lin
e.

7

•

Two modes

of file I/O: text

and binary
━

Must be requested when you open the file
•

Binary

means disk contents are an exact copy of the

RAM buffer that is written and vice versa
•

Text

means there is some library

(wrapper) between

the application and OS that applies certain “magic”
 translation before your program sees the data

━

For fopen/fprintf, this involves \r\n \n, terminating the read
at Ctrl-Z markers (ASCII code 26), and certain multi-byte to
wide char mapping based on the locale

•

Note: text files can be always read in binary mode,
while the opposite is not true

Background on FilesBackground on FilesBackground on Files

8

•

Example: binary mode

reads the file as is:

━

while text mode

removes \r

•

If the file is tweaked before it reaches your program,
lots of confusing things may happen
━

E.g., file size 100,050 bytes, but your buffer gets only 99,800
•

Since text-mode processing does usually unwanted
things to the file and is much slower than binary mode,
it is not recommended (see later for benchmarks)

Background on FilesBackground on FilesBackground on Files

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0A 53 65 63 6F 6E 64 20 6C 69 6E 65
2E

This is a text file.
 Second line.

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

9

•

Number representation

can be ASCII

or native
━

ASCII is human-readable form (e.g., printf (“%d”, x))
━

Native is identical to how numbers are stored in RAM
•

Example:

•

ASCII output depends on how the numbers are written
(e.g., decimal, hex) and the separator between them
━

Conversion to/from ASCII is usually slow
━

Format inefficient in terms of storage
•

APIs that read raw buffers are usually native
━

Those that attempt to read individual variables are ASCII

Background on FilesBackground on FilesBackground on Files

int x = 0x11223344;int x = 0x11223344;

44 33 22 11 native version

32 38 37 34 35 34 30 32 30

decimal ASCII version of x, i.e., string “287454020”

10

•

Suppose we read an
integer natively from the beginning of this file

━

What is the value of x?
━

Equivalent versions
•

How to write contents of some class natively to disk?
━

If it has no pointers, then it’s trivial

Background on FilesBackground on FilesBackground on Files This is a text file.
 Second line.

int x;
ReadFile (&x, sizeof(int));
int x;
ReadFile (&x, sizeof(int));

char buf[] = “This”;
int x = *(int*) buf;
char buf[] = “This”;
int x = *(int*) buf;

class MyClass {
double a;
uint64 b;

};

MyClass mc;
mc.a = 3.1415;
mc.b = 0x55;
WriteFile (…, &mc, sizeof(MyClass), …);

class MyClass {
double a;
uint64 b;

};

MyClass mc;
mc.a = 3.1415;
mc.b = 0x55;
WriteFile (…, &mc, sizeof(MyClass), …);

6F 12 83 C0 CA 21 09 40 55 00 00 00 00 00 00 00

�Notepad shows: o

ƒÀÊ!@U

int x = 0x73696854;int x = 0x73696854;

mc.a mc.b

54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
69 6C 65 2E 0D 0A 53 65 63 6F 6E 64 20 6C 69 6E
65 2E

11

•

How to store pointers, e.g., a linked list or binary tree?

•

Data structure must first be converted to an array
━

Hierarchical structure must be flattened

Background on FilesBackground on FilesBackground on Files

class LinkedListElem {
int val;
LinkedListElem *next;

};

class LinkedListElem {
int val;
LinkedListElem *next;

};

class TreeElem {
int val;
TreeElem *left, *right;

};

class TreeElem {
int val;
TreeElem *left, *right;

};

int valArray = new int [LinkedList.size()];

// traverse the list, copy into valArray
WriteFile (…, valArray,

sizeof(int) * LinkedList.size(), …);

int valArray = new int [LinkedList.size()];

// traverse the list, copy into valArray
WriteFile (…, valArray,

sizeof(int) * LinkedList.size(), …);

class TreeElem2 {
int val;
int left, right; // offsets

};

TreeElem2 *arr = new
TreeElem2 [tree.size()];

class TreeElem2 {
int val;
int left, right; // offsets

};

TreeElem2 *arr = new
TreeElem2 [tree.size()];

val = 55
left = 1
right = 2

val = 55
left = 1
right = 2

val = 22
left = 3
right = 0

val = 22
left = 3
right = 0

val = 77
left = 4
right = 5

val = 77
left = 4
right = 5

val = 14
left = 0
right = 0

val = 14
left = 0
right = 0

val = 65
left = 0
right = 0

val = 65
left = 0
right = 0

val = 90
left = 0
right = 0

val = 90
left = 0
right = 0

0 1 2 3 4 5

5555

2222 7777

1414 6565 9090

12

•

In fact, trees stored as arrays in RAM are often much
faster than pointer-based trees
━

Main drawback: difficult to deal with fragmentation
•

Further compaction: 2 bits to store # of children
━

Suppose 00 = none, 01 = left, 10 = right, 11 = both

•

Conversion from random-access (RAM) structures to
sequential arrays is called serialization
━

Similar to serial transmission over COM ports or networks

Background on FilesBackground on FilesBackground on Files

val = 55
bits = 3
val = 55
bits = 3

val = 22
bits = 1
val = 22
bits = 1

val = 77
bits = 3
val = 77
bits = 3

val = 14
bits = 0
val = 14
bits = 0

val = 65
bits = 0
val = 65
bits = 0

val = 90
bits = 0
val = 90
bits = 0

0 1 2 3 4 5

5555

2222 7777

1414 6565 9090

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 11: Roadmap
	I/O Devices
	I/O Devices
	I/O Devices
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files
	Background on Files

