CSCE 313-200
Introduction to Computer Systems
Spring 2016

Practice
Dmitri Loguinov
Texas A&M University

February 23, 2016
Midterm #1

- **Problem 6**
 - Part in bold is important to solving this question
 - Upper bound is sequential execution, we get 100
 - Lower bound?

- **Problem 2: WRR queuing**
 - If N jobs are pushed on the CPU, (1-w)N are from low-priority Q
 - Equating $K = (1-w)N$, we obtain $N = K / (1-w)$ time slices
 - Total delay = $N \Delta$ seconds where Δ is one slice delay
Semaphore Problems

- Concurrency is a difficult concept
 - Cannot be understood without practice
- Threads are replaced with arbitrary actors
 - E.g., “no more than 15 animals can enter the room”
- Rules for semaphore/mutex solutions
- 1) All wait() functions are blocking
 - No timeouts to break out of deadlocks
- 2) No looping while waiting for events
 - Example on the right is not acceptable →
- 3) Bulk semaphore release(N) is available
- 4) Semaphore release beyond max throws an error

```c
mutex.Lock();
while (Q.size() == 0)
  mutex.Unlock();
  Sleep
mutex.Lock();
```
Semaphore Problems

• In programs, you can obviously violate these rules
 - However, tests will require less-straightforward approaches that demonstrate your grasp of synchronization theory

• Exam preparation guide:
 - Little Book of Semaphores
 - http://greenteapress.com/semaphores/

• Make sure to actively attempt solving problems
 - Tests will have similar levels of difficulty

• Problem #1
 - Bears and goats come to a party; however, the barn can hold only 15 animals max

```c
void EnterBarn (void) {
  // called when animal // wants to enter
}

void Party (void) {
  // called when partying
}
Semaphore Problems

• Problem #2
  - Barn holds no more than 8 bears and no more than 12 goats at any time

• Problem #3
  - No more than 8 bears, no more than 12 goats, and no more than 15 combined

• Problem #4
  - First animal to enter turns on the lights
  - Last animal to exit turns off lights
  - Nobody can enter or leave while lights are being manipulated

• Problem #5
  - If Pig (assumed to be unique) shows up to party, no other animal can enter until Pig voluntarily leaves

```c
void EnterBarn (int type) {
 // 0 = goat, 1 = bear
}
```

```c
void LeaveBarn (int type) {
 // 0 = goat, 1 = bear
}
```

```c
void TurnOnLights(void) {
 // gets called if room is dark
}
```
Semaphore Problems

• Problem #6
  - Pig wants to crash the party, but with style
  - If Pig arrives and fewer than 50 animals are in barn, it waits
  - While Pig is waiting, new animals may enter or depart; once critical mass of 50 is reached, the pig crashes party
  - While Pig is inside, all arriving animals must wait outside until Pig departs

• Problem #7
  - Same as #6, but Pig locks the door, nobody can leave

• Problem #8
  - If room is empty, any animal may enter
  - If room has someone inside, new animals must wait outside until they are allowed to enter by whoever is departing
  - Departing animal prefers to let animals of the same type in
Semaphore Problems

• Work on these at home
  ─ Were on the test last year

• Problem #9
  ─ Bears and goats come to party at the barn; main caveat is bears may get drunk and start eating goats
  ─ If barn is empty, either type of animal may enter
  ─ If bears are inside, arriving bears should enter without delay
  ─ If goats are inside, arriving goats should enter without delay

• Problem #10
  ─ Same as #9, but barn occupancy is 50 animals max

• Problem #11
  ─ Same as #9, but ensures lack of starvation