CSCE 313-200
Introduction to Computer Systems
Spring 2019

Practice
Dmitri Loguinov
Texas A&M University

February 19, 2019
Problem 6
- Part in bold is important to solving this question
- Upper bound is sequential execution, we get 100
- Lower bound?

Problem 2: WRR queuing
- If M jobs are pushed on the CPU, \((1-w)M\) are from low-priority Q
- Equating \(K = (1-w)M\), we obtain \(M = \frac{K}{(1-w)}\) time slices
- Total delay = \(M\Delta\) seconds where \(\Delta\) is one slice delay
Semaphore Problems

• Concurrency is a difficult concept
 - Hard to fully understand without practice
• Threads are replaced with arbitrary actors
 - E.g., “no more than 15 animals can enter the room”
• Rules for semaphore/mutex solutions
• 1) All wait() functions are blocking
 - No timeouts to break out of deadlocks
• 2) No looping while waiting for events
 - Example on the right is not acceptable →
• 3) Bulk semaphore release(N) is available
• 4) Semaphore release beyond max throws an error

```cpp
mutex.Lock();
while (Q.size() == 0)
  mutex.Unlock()
  Sleep
mutex.Lock()
```
Semaphore Problems

• In programs, you can obviously violate these rules
 − However, tests will require less-straightforward approaches that demonstrate your grasp of synchronization theory

• Exam preparation guide:
 − Little Book of Semaphores
 − http://greenteapress.com/semaphores/

• Make sure to actively attempt solving problems
 − Tests will have similar levels of difficulty

• Problem #1
 − Bears and goats come to a party; however, the barn can hold only 15 animals max

```c
void EnterBarn (void) {
    // called when animal wants to enter
}

void Party (void) {
    // called when partying
}
```
Semaphore Problems

- **Problem #2**
 - Barn holds no more than 8 bears and no more than 12 goats at any time

- **Problem #3**
 - No more than 8 bears, no more than 12 goats, and no more than 15 combined

- **Problem #4**
 - First animal to enter turns on the lights
 - Last animal to exit turns off lights
 - Nobody can enter or leave while lights are being manipulated

- **Problem #5**
 - If Pig (assumed to be unique) shows up to party, no other animal can enter until Pig voluntarily leaves
Semaphore Problems

• **Problem #6**
 - Pig wants to crash the party, but with style
 - If Pig arrives and fewer than 50 animals are in barn, it waits
 - While Pig is waiting, new animals may enter or depart; once critical mass of 50 is reached, the pig crashes party
 - While Pig is inside, all arriving animals must wait outside until Pig departs

• **Problem #7**
 - Same as #6, but Pig locks the door, nobody can leave

• **Problem #8**
 - If room is empty, any animal may enter
 - If room has someone inside, new animals must wait outside until they are allowed to enter by whoever is departing
 - Departing animal prefers to let animals of the same type in
Semaphore Problems

• Work on these at home
 – Were on the test last year

• Problem #9
 – Bears and goats come to party at the barn; main caveat is bears may get drunk and start eating goats
 – If barn is empty, either type of animal may enter
 – If bears are inside, arriving bears should enter without delay
 – If goats are inside, arriving goats should enter without delay

• Problem #10
 – Same as #9, but barn occupancy is 50 animals max

• Problem #11
 – Same as #9, but ensures lack of starvation