CSCE 313-200 Introduction to Computer Systems Spring 2024

Practice
Dmitri Loguinov
Texas A\&M University

February 14, 2024

Semaphore Problems

- Concurrency is a difficult concept
- Hard to fully understand without practice
- Threads are replaced with arbitrary actors
- E.g., "no more than 15 animals can enter the room"
- Rules for semaphore/mutex solutions
- 1) All wait() functions are blocking
- No timeouts to break out of deadlocks
- 2) No looping while waiting for events
- Example on the right is not acceptable \rightarrow

```
mutex.Lock();
while (Q.size() == 0)
    mutex.Unlock()
    Sleep
    mutex.Lock()
```

- 3) Bulk semaphore release (N) is available
- 4) Semaphore release beyond max throws an error

Semaphore Problems

- In programs, you can obviously violate these rules
- However, exams will require less-straightforward approaches that demonstrate your grasp of synchronization theory
- Exam preparation guide:
- Little Book of Semaphores
- http://greenteapress.com/semaphores/
- Make sure to actively attempt solving problems
- Tests will have similar levels of difficulty
- Problem \#1
- Bears and goats come to a party; however, the barn can hold only 15 animals max

```
void EnterBarn (void) {
    // called when animal
    // wants to enter
}
void Party (void) {
    // called when partying
}
```


Semaphore Problems

- Problem \#2

```
void LeaveBarn (int type) {
    // 0 = goat, 1 = bear
}
```

- Barn holds no more than 8 bears and no more than 12 goats at any time
- Problem \#3

```
void EnterBarn (int type) {
    // 0 = goat, 1 = bear
}
```

- No more than 8 bears, no more than 12 goats, and no more than 15 combined
- Problem \#4

```
void TurnOnLights(void)
    // gets called if room is dark
}
```

- First animal to enter turns on the lights
- Last animal to exit turns off lights
- Nobody can enter or leave while lights are being manipulated
- Problem \#5
- If Pig (assumed to be unique) shows up to party, no other animal can enter until Pig voluntarily leaves

Semaphore Problems

- Problem \#6
- Pig wants to crash the party, but with style
- If Pig arrives and fewer than 50 animals are in barn, it waits
- While Pig is waiting, new animals may enter or depart; once critical mass of 50 is reached, the pig crashes party
- While Pig is inside, all arriving animals must wait outside until Pig departs
- Problem \#7
- Same as \#6, but Pig locks the door, nobody can leave
- Problem \#8
- If room is empty, any animal (bear/goat) may enter
- If room has someone inside, new animals must wait outside until they are allowed to enter by whoever is departing
- Departing animal prefers to let animals of the same type in

Semaphore Problems

- Work on these at home
- Some may be on the test
- Problem \#9
- Bears and goats come to party at the barn; the caveat is bears may get drunk and start eating goats, which is disallowed
- If barn is empty, either type of animal may enter
- If bears are inside, arriving bears should enter without delay
- If goats are inside, arriving goats should enter without delay
- Problem \#10
- Same as \#9, but barn occupancy is 50 animals max
- Problem \#11
- Same as \#9, but no starvation

