CSCE 313-200

Introduction to Computer Systems
Spring 2024

Processes

Dmitri Loguinov
Texas A&M University

January 26, 2024

Homework #1 q =L + (float)w / (d+1)

* When running A* !
- |Incorrect # of nodes if weight is integering =L + w/ (d+1)

« Basic BFS and DFS

- Order of traversal on this graph?

A“

djacency list
: E, D, B

F

A
A
B:
C:
D-
E
F
G

WO>X>»>>m2>
MmO OOoOo

Homework #1

» Refresh the concept of search
- Assume an undirected graph G = (V,E)
- Start node seV

 Maintain two structures
- Unexplored set U
- Discovered set D

* Approach #1:

U.add (s)
whille (U.notEmpty O)
X = U.removeNextNode () // node to explore
iIfT (D.find(xX) == true) // 1T already explored, ignore
continue
N = G.getNeighbors (x) // N is a set of nodes
IT (N.size() == 0) break // exit?
for each y Iin N
U.add () Any problems?

Homework #1

* This code fails to actually insert anything into D
* Correct version:

U.add (s)
whille (U.notEmpty O)
X = U.removeNextNode ()
iIT (D.find(X) == true) // it already explored, ignore
continue
D.add (x)
N = G.getNeighbors (x)
iIT (N.size() == 0) break // exit?

for each y Iin N
U.add (y) Any drawbacks?

* Requires huge storage as each node may be pushed
Into U as many times as there are links to it

- Not advisable in practice

Homework #1

« Approach #2 inserts a single copy of each node in U:

U.add (s); D.add (s); // s = source node
whille (U.notEmpty O)
X U.removeNextNode ()
N G.getNeighbors (x)
iIT (N.size() == 0) break // exit?
for each y Iin N
iIT (D.find (y) == false) // has been pushed 1n U?

U.add . .
- add 83 Always use this version!

* For most types of non-trivial exploration, approach #2
Is far superior to #1

« What if D has a function that combines find/add?
- Can directly use STL set’s insert() function

Homework #1

 When you find the exit, how far is it from s?
« |dea: make U keep track of tuples (nodelD, distance)

U.add (s, 0); D.add (s);
whille (U.notEmpty O)
t U.removeNextTuple () // t 1s a tuple
N G.getNeighbors (t.ID)
iIT (N.size() == 0)
printf (““Found at distance %d\n”’, t.distance)

break
for each y Iin N
if (D.find (y) == false) // new node?
U.add (y, t.distance + 1)
D.add (y)

* Note that U.add() also needs light intensity for bF S/A*

- See the handout for details

Homework #1

* Reusing the search algorithm

— Create a base class

class Ubase {
virtual void Add (uint64 1D,

int distance, float iIntensity) = O;

virtual UnexploredRoom RemoveNextTuple (void) = O;

- Inherit four classes

class Ubreadth : public Ubase {

// implement a queue here
¥
class Udepth : public Ubase {

// implement a stack here
by

- Create base pointer to
a specific class, then
send it to search()

Ubase *ptr;

iIT (searchType == BFS)
ptr = new Ubreadth;

else 1f __.

Search (ptr);

Search (Ubase *U)

{
while (U->size() > 0)

Chapter 3: Roadmap

m) 3.1 What is a process? Part I
3.2 Process states Chapter 3: Processes
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

1940 1961

P uniprogramming | multi-programming time-sharing
OCESSEeS 4

>4
jobs processes

 From the 1960s, jobs were described by a special data
structure that allowed the OS to systematically monitor,
control, and synchronize them

* This became known as a process, which consists of:

- Program in execution machine instructions
- Data Program code global and static vars,
- Stack Data || constants, heap

- Process Control Stack B local vars, function

parameters, return
Block (PCB) ? addresses
* Note that programs auxiliary info to

stored on disk do not become manage process
processes until they are started

Processes

* Processes with shared memory

- |f shared memory is created by a process, it can be
accessed in other processes in the system

- This is called memory mapping

- Just like named pipes, shared memory in Windows is
addressable using some unique name

process, process,

Shared memory

10

Chapter 3: Roadmap

3.1 What Is a process?
mm) 3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

11

Process States

* Process trace

- Offsets (i.e., relative addresses) of
Instructions executed by a process

e CPU trace

- Sequence of absolute addresses
executed by the CPU

- Suppose OS allows 6 CPU
Instructions in a slice, needs 3 to
perform a process switch

N = O[>

503
504
505
506
507
108
109
110
111

WN—=O|I

RAM

900
901
902
903
904
900
901
902
903
904
900

Process States

* This brings us to the issue of how the OS keeps track
of processes and what runs next

« Simple 2-state model:

new dispatch

* Implementation:

dispatch

new T 1T 1 > CPU | exit
single queue

pause

13

Process States

* Process termination « Stealthy crashes
- Normal completion - Severe stack corruption may
- User request (e.g., Ctrl-C) cause program to quit
- Request from another without any warning or error
process « |f code crashes in Release
- Access violation mode, will it crash in
- Arithmetic error (division Debug?
by zero) - Not necessarily
= Invalid instruction - Some bugs can be seen only
- Privileged instruction In release mode
- Not enough RAM - Reasons?

(bad_alloc exception) - What about vice versa?

14

Process States

* Notice that 2-state model has no simple way of
selecting the next ready process
- Some might be blocked on I/O or events

 Next version, called 5-state model, solves this:

term'\“a‘e

dispatch

short-term
scheduler

long-term
scheduler

pause

®
yA
7-state model: suspends %/
blocked processes to disk; N
: Q
medium-term scheduler %

activates them back to RAM terminate

15

Chapter 3: Roadmap

3.1 What Is a process?
3.2 Process states
3.3 Process description
W) 3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

16

Execution Modes

 CPU provides at least 2 execution modes

- User mode prohibits all I/O instructions, virtual table
manipulation, access to blocks of RAM not owned by
process, and modification of certain registers

- Kernel mode has no restrictions

« Some architectures allow more than 2 modes

- These are often called protection rings

- More granularity to allow “intermediate” privileges to certain
processes (e.g., printer driver should be able to perform /O,
but not modify virtual-memory tables)

 Intel/AMD CPUs support 4 execution levels
- Some older supercomputers had 8

17

high privilege
drivers (ring™)

Execution Modes

« Consider a hypothetical
4-ring system: |
: kernel
- Ring 3 always user mode (ying 0
- Ring 0 always kernel -
- Rings 1 and 2 depend on S s
the implementation
* Windows and Linux support only rings 0 and 3

- Partly because other architectures these can run on (e.g.,
PowerPC and MIPS) traditionally had only 2 modes

- Partly to reduce complexity

* Main drawback of 2-level systems
- Any driver crash bluescreens the system and forces a reboot

18

low privilege
drivers (ring 2)

Execution Modes

hypervisor
(ring 0)
* Microsoft virtualization ’\
guest OS
server (Hyper-V) is an \ \ (ring 1)
exception '
- Virtual machines (VM) allow
multiple guest OSes to run ”(r’ltngszed
transparently on the CPU
* Guest OSes are managed by e e
the virtual machine monitor (ring 3)

(VMM) called hypervisor

- In contrast to normal kernels that are called supervisors

* Hypervisor runs in ring 0, guest OS in ring 1

- AMD-V was supported starting with Athlon 64 (2006) and
Intel VT-x starting with Pentium 4 (2005) o

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Chapter 3: Roadmap
	Processes
	Processes
	Chapter 3: Roadmap
	Process States
	Process States
	Process States
	Process States
	Chapter 3: Roadmap
	Execution Modes
	Execution Modes
	Execution Modes

