
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

ProcessesProcesses
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

January 26, 2024January 26, 2024

2

Homework #1Homework #1Homework #1

•

When running A*
━

Incorrect # of nodes if weight is integer in q = L + w / (d+1)
•

Basic BFS and DFS
━

Order of traversal on this graph?

AA

CC

BB

DD

FF

EE

GG Adjacency list
A: E, D, B
B: A, G
C: E, D, F
D: A, C
E: A, C
F: C, G
G: B, F

Adjacency list
A: E, D, B
B: A, G
C: E, D, F
D: A, C
E: A, C
F: C, G
G: B, F

q = L + (float)w

/ (d+1)

33

Homework #1Homework #1Homework #1

•

Refresh the concept of search
━

Assume an undirected graph G = (V,E)
━

Start node sV
•

Maintain two structures
━

Unexplored set U
━

Discovered set D
•

Approach #1:
U.add (s)
while (U.notEmpty ())

x = U.removeNextNode () // node to explore
if (D.find(x) == true) // if already explored, ignore

continue
N = G.getNeighbors (x) // N is a set of nodes
if (N.size() == 0) break // exit?
for each y in N

U.add (y)

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode () // node to explore
if (D.find(x) == true) // if already explored, ignore

continue
N = G.getNeighbors (x) // N is a set of nodes
if (N.size() == 0) break // exit?
for each y in N

U.add (y) Any problems?

44

Homework #1Homework #1Homework #1

•

This code fails to actually insert anything into D
•

Correct version:

•

Requires huge storage as each node may be pushed
into U as many times as there are links to it
━

Not advisable in practice

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode ()
if (D.find(x) == true) // if already explored, ignore

continue
D.add (x)
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

U.add (y)

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode ()
if (D.find(x) == true) // if already explored, ignore

continue
D.add (x)
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

U.add (y) Any drawbacks?

55

Homework #1Homework #1Homework #1

•

Approach #2 inserts a single copy of each node in U:

•

For most types of non-trivial exploration, approach #2
is far superior to #1

•

What if D has a function that combines find/add?
━

Can directly use STL set’s insert() function

U.add (s); D.add (s); // s = source node
while (U.notEmpty ())

x = U.removeNextNode ()
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

if (D.find (y) == false) // has been pushed in U?
U.add (y)
D.add (y)

U.add (s); D.add (s); // s = source node
while (U.notEmpty ())

x = U.removeNextNode ()
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

if (D.find (y) == false) // has been pushed in U?
U.add (y)
D.add (y) Always use this version!

66

Homework #1Homework #1Homework #1

•

When you find the exit, how far is it from s?
•

Idea: make U keep track of tuples

(nodeID, distance)

•

Note that U.add() also needs light intensity for bFS/A*
━

See the handout for details

U.add (s, 0); D.add (s);
while (U.notEmpty ())

t = U.removeNextTuple () // t is a tuple
N = G.getNeighbors (t.ID)
if (N.size() == 0)

printf (“Found at distance %d\n”, t.distance)
break

for each y in N
if (D.find (y) == false) // new node?

U.add (y, t.distance + 1)
D.add (y)

U.add (s, 0); D.add (s);
while (U.notEmpty ())

t = U.removeNextTuple () // t is a tuple
N = G.getNeighbors (t.ID)
if (N.size() == 0)

printf (“Found at distance %d\n”, t.distance)
break

for each y in N
if (D.find (y) == false) // new node?

U.add (y, t.distance + 1)
D.add (y)

77

Homework #1Homework #1Homework #1

•

Reusing the search algorithm
━

Create a base class

━

Inherit four classes

━

Create base pointer to
a specific class, then

 send it to search()

class Ubase {
virtual void Add (uint64 ID, int distance, float intensity) = 0;
virtual UnexploredRoom RemoveNextTuple (void) = 0;
...

}

class Ubase {
virtual void Add (uint64 ID, int distance, float intensity) = 0;
virtual UnexploredRoom RemoveNextTuple (void) = 0;
...

}

class Ubreadth : public Ubase {
// implement a queue here

}
class Udepth : public Ubase {

// implement a stack here
}
...

class Ubreadth : public Ubase {
// implement a queue here

}
class Udepth : public Ubase {

// implement a stack here
}
...

Search (Ubase *U)
{

while (U->size() > 0)
...

}

Search (Ubase *U)
{

while (U->size() > 0)
...

}

Ubase *ptr;
if (searchType == BFS)

ptr = new Ubreadth;
else if ...

Search (ptr);

Ubase *ptr;
if (searchType == BFS)

ptr = new Ubreadth;
else if ...

Search (ptr);

8

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks

9

•

From the 1960s, jobs were described by a special data
structure

that allowed the OS to systematically monitor,

control, and synchronize them
•

This became known as a process, which consists of:
━

Program in execution
━

Data
━

Stack
━

Process Control
Block (PCB)

•

Note that programs
stored on disk do not become
processes until they are started

9

ProcessesProcessesProcesses uniprogramminguniprogramming multi-programmingmulti-programming

jobs processes

time-sharingtime-sharing

1940 1961

DataData
global and static vars,
constants, heap

Program codeProgram code
machine instructions

StackStack local vars, function
parameters, return
addresses PCBPCB

auxiliary info to
manage process

10

ProcessesProcessesProcesses

•

Processes with shared memory
━

If shared memory is created by a process, it can be
accessed in other processes in the system

━

This is called memory mapping
━

Just like named pipes, shared memory in Windows is
addressable using some unique name

Program code1

Program code1

Data1

Data1

Stack1

Stack1

PCB1

PCB1

process1

Program code2

Program code2

Data2

Data2

Stack2

Stack2

PCB2

PCB2

process2

Shared memoryShared memory

11

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

12

Process StatesProcess StatesProcess States
•

Process trace
━

Offsets

(i.e., relative addresses) of
instructions executed

by a process

•

CPU trace
━

Sequence of absolute addresses
executed by the

CPU

━

Suppose OS

allows

6 CPU
instructions in a

slice, needs 3 to

perform a process switch

A

0

1
2

503
504
505
506
507
108
109
110
111

A

0
1
2

503
504
505
506
507
108
109
110
111

B

0

1
2
3

B

0
1
2
3

C

0

900
901
902
903
904
900
901
902
903
904
900

C

0

900
901
902
903
904
900
901
902
903
904
900

5000

9000

6000

CPU
5000
5001
5002
5503
5504
5505

CPU
5000
5001
5002
5503
5504
5505

100
101
102

6000
6001
6002

100
101
102

6000
6001
6002

100

6003
100
101
102

9000
9900

6003
100
101
102

9000
9900

9901
9902
9903
9904
100
101

9901
9902
9903
9904
100
101

102
5506
5507
5108
5109
5110

102
5506
5507
5108
5109
5110

132

OSOS

AA

BB

CC

RAM

13

Process StatesProcess StatesProcess States

•

This brings us to the issue of how the OS

keeps track
of processes and what runs next

•

Simple 2-state model:

•

Implementation:

RunningNot
running

single queue
CPUCPU

dispatch
exitnew

pause

dispatch

pause

new

exit

14

Process StatesProcess StatesProcess States

•

Process termination
━

Normal completion
━

User request (e.g., Ctrl-C)
━

Request from another
process

━

Access

violation
━

Arithmetic error (division
by zero)

━

Invalid instruction
━

Privileged instruction
━

Not

enough RAM
(bad_alloc exception)

•

Stealthy crashes
━

Severe stack corruption may
cause program to quit
without any warning or error

•

If code crashes in Release
mode, will it crash in
Debug?
━

Not necessarily
━

Some bugs can be seen only
in release mode

━

Reasons?
•

What about vice versa?

15

Process StatesProcess StatesProcess States

•

Notice that 2-state model has no simple way of
selecting the next ready process
━

Some might be blocked on I/O or events
•

Next version, called 5-state model, solves this:

RunningNot
Running

dispatch

pause

new

exit

RunningReady

Blocked

dispatch

ev
en

t w
ait

terminate

pause

event occurs

admitNew Exit
quit/terminate

terminate

long-term
scheduler

short-term
scheduler

terminate

7-state model: suspends
blocked processes to disk;

medium-term scheduler
activates them back to RAM

16

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

17

Execution ModesExecution ModesExecution Modes

•

CPU provides at least 2 execution modes
━

User mode

prohibits all I/O instructions, virtual table
manipulation, access to blocks of RAM not owned by
process, and modification of certain registers

━

Kernel mode

has no restrictions
•

Some architectures allow more than 2 modes
━

These are often called protection rings
━

More granularity to allow “intermediate”

privileges to certain
processes (e.g., printer driver should be able to perform I/O,
but not modify virtual-memory tables)

•

Intel/AMD CPUs support 4 execution levels
━

Some older supercomputers had 8

18

Execution ModesExecution ModesExecution Modes

•

Consider a hypothetical
4-ring system:
━

Ring 3 always user mode
━

Ring 0 always kernel
━

Rings 1 and 2 depend on
the implementation

•

Windows and Linux support only rings 0 and 3
━

Partly because other architectures these can run on (e.g.,
PowerPC and MIPS) traditionally had only 2 modes

━

Partly to reduce complexity
•

Main drawback of 2-level systems
━

Any driver crash bluescreens the system and forces a reboot

user applications
(ring 3)

low privilege
drivers (ring 2)

high privilege
drivers (ring 1)

kernel
(ring 0)

19

Execution ModesExecution ModesExecution Modes

•

Microsoft virtualization
server (Hyper-V) is an
exception
━

Virtual machines (VM) allow
 multiple guest OSes to run

 transparently on the CPU
•

Guest

OSes are managed by

the virtual machine monitor
(VMM) called hypervisor
━

In contrast to normal kernels that are called supervisors
•

Hypervisor runs in ring 0, guest OS in ring 1
━

AMD-V was supported starting with Athlon 64 (2006) and
Intel VT-x starting with Pentium 4 (2005)

user applications
(ring 3)

not used
(ring 2)

guest OS
(ring 1)

hypervisor
(ring 0)

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Chapter 3: Roadmap
	Processes
	Processes
	Chapter 3: Roadmap
	Process States
	Process States
	Process States
	Process States
	Chapter 3: Roadmap
	Execution Modes
	Execution Modes
	Execution Modes

