CSCE 313-200
Introduction to Computer Systems
Spring 2023

Operating Systems
Dmitri Loguinov
Texas A&M University

January 24, 2023
Chapter 2: Book Overview

• Lectures skip chapter 1
 - Mostly 312 background with some examples

• Our goal in chapter 2
 - Understand the motivation for building an OS
 - Introduce basic terminology and history
 - Glance over the main concepts studied later
Chapter 2: Motivation

• Early computers (1940-1950s) did not have an OS

• Programs (called jobs) were loaded manually from punch cards
 – Errors were indicated by lights
 – Printer output signaled successful completion

• Three main problems:
 – Scheduling inefficiency
 – Setup delays
 – Hardware awareness

IBM punch card (invented in 1928)
Chapter 2: Motivation

• Scheduling inefficiencies
 – Sign-up sheet to reserve computer time
 – Wasted resources if job finishes quicker than reserved time
 – Forced termination and repeated visits if taking too long

• Setup delays
 – Loading compiler, source code, libraries, input data, and linking involved mounting tapes and/or card decks
 – If an error occurred, the user had to restart the process
 – Considerable time dedicated to setting up the program to run

• Hardware awareness
 – Programmer had to write directly into device registers in every program, keep track of hardware changes
 – Time wasted on largely irrelevant code development
Chapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux
Evolution of the OS

- Manual job control in the 1940s was known as **serial processing**
- Extreme inefficiency and inconvenience prompted automation of the process and development of an OS
- Main functions
 - Controls the execution of application programs
 - Provides an interface to hardware
Simple Batch System (1955)

- Early computers were extremely expensive
 - Was important to maximize processor utilization
- With an OS present, user no longer had direct access to CPU or devices
 - Instead, submitted jobs into a FIFO queue that was read and executed by a monitor
- When programs were done, they returned control to the monitor

OS = monitor

- Device drivers
- Job sequencing
- JCL interpreter

User program area

Job Control Language (JCL)
- Directives how to run the job (e.g., compiler, input data, job owner)
Simple Batch System

Hardware features

- **Memory protection**
 - Jobs with access violations (e.g., trying to wipe out the monitor) were aborted

- **Timer**
 - Prevented jobs from monopolizing system or infinitely looping
 - Each job had a fixed deadline by which it had to finish

- **Privileged instructions**
 - Execution allowed only by the monitor
 - Prevented jobs from crashing the system or reading unauthorized data (e.g., the next job)
 - Monitor controlled all I/O

- **I/O interrupts**
 - Were not needed as all I/O was synchronous
• Even in batched systems, the CPU was often idle
 – Automatic job sequencing helped reduce the delay *between* the jobs, but not *within* them
 – Reason: I/O devices are slow compared to processor

• **Example**: a job spends 15 ms reading a record from the file, then processes it for 1 ms, and finally writes one record to another file (also 15 ms)
 – What is the CPU utilization?

• This is often called *uni-programming*
Multi-Programmed Batch System

- **Idea**: when one job needs to wait for I/O, the monitor can switch the CPU to another job
 - Various scheduling algorithms are possible
 - Example below uses strict priority scheduling from A to C

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>I/O wait</th>
<th>CPU</th>
<th>I/O wait</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>wait</td>
<td>CPU</td>
<td>I/O wait</td>
<td>CPU</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>wait</td>
<td>CPU</td>
<td>wait</td>
<td>CPU</td>
<td>wait</td>
</tr>
</tbody>
</table>

- Interrupts are now needed for monitor to regain control
- This is called **multi-programming** (or **multi-tasking**) and is now the central theme of modern OSes
At time 0, three jobs are submitted to a monitor in a system with 250 MB of RAM:
- CPU in table means % of time task is not blocked on I/O
- Assume jobs never conflict on the same I/O device

Uni-programming

<table>
<thead>
<tr>
<th>Job</th>
<th>Duration</th>
<th>CPU Usage</th>
<th>RAM Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 min</td>
<td>70%</td>
<td>50 MB</td>
</tr>
<tr>
<td>2</td>
<td>15 min</td>
<td>10%</td>
<td>100 MB</td>
</tr>
<tr>
<td>3</td>
<td>10 min</td>
<td>10%</td>
<td>75 MB</td>
</tr>
</tbody>
</table>

Multi-programming

<table>
<thead>
<tr>
<th>Job</th>
<th>Duration</th>
<th>CPU Usage</th>
<th>RAM Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 min</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>5 min</td>
<td>20%</td>
<td>70%</td>
</tr>
<tr>
<td>3</td>
<td>5 min</td>
<td>10%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Job</th>
<th>CPU</th>
<th>Duration</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70%</td>
<td>5 min</td>
<td>50 MB</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>15 min</td>
<td>100 MB</td>
</tr>
<tr>
<td>3</td>
<td>10%</td>
<td>10 min</td>
<td>75 MB</td>
</tr>
</tbody>
</table>

Task 1: completion time of last job in uni-programming?

Task 2: what is the average CPU and RAM utilization?
- Metric computed over the entire interval

- **Uni-programming**
 - CPU: \(\frac{70\% \times 5 + 10\% \times 15 + 10\% \times 10}{30} = 20\% \)
 - RAM: \(\frac{20\% \times 5 + 40\% \times 15 + 30\% \times 10}{30} = 33.3\% \)

Task 3: what is the **throughput** of the system?
- Number of jobs finished per time unit (e.g., 1 hour)

Task 4: what is the **mean response time**?
- Average delay from job submission to its completion
 - Uniprocessing: \(\frac{5 + 20 + 30}{3} = 18.333\) min
Time Sharing System (1961)

- Batch mode favors long CPU-bound jobs
 - Response time for other tasks may be minutes or hours
- Maximizing CPU utilization does not suit interactive jobs
 - E.g., a text editor cannot wait 3 hours for its turn
- Under time-sharing, CPU is periodically provided to all jobs not waiting for I/O
 - **Goal:** minimize response delay
- Time divided into slices
 - E.g., 200 ms in early systems, 1-10 ms in modern OSes
- The kernel rotates through all jobs scheduling them to run
 - Max delay before getting on the CPU
 - Slice * (number of jobs in system – 1)
Time Sharing System

- Comparison

 - Response time of C with 10-ms slices?
 - First time-sharing OS
 - *Compatible Time-Sharing System (CTSS)*, MIT 1961
 - Modern OSes derived from these early concepts
Real-Time System

- In regular OSes, job switching delays are random and depend on the immediate backlog of CPU-bound tasks and their priority
 - Under worst-case scenarios, a job may not receive its turn for many slices
- This presents certain problems in mission-critical applications
 - E.g., car traction control, helicopter missile-guidance system
- **Real-time OS** (RTOS) provides guarantees on scheduling and interrupt delays
 - Examples include Windows CE, RTLinux, VxWorks
OS Growth

- OSes are complex pieces of software
 - MIT’s CTSS (1961-3): 32,000 machine words
 - IBM’s OS/360 (1964): 1M CPU instructions
 - Multics (1978): 20M CPU instructions

- Later, software was measured in source lines of code (SLOC)
 - Estimates from Wikipedia:

<table>
<thead>
<tr>
<th>Year</th>
<th>OS</th>
<th>SLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>NT 3.1</td>
<td>4M</td>
</tr>
<tr>
<td>94</td>
<td>NT 3.5</td>
<td>7M</td>
</tr>
<tr>
<td>96</td>
<td>NT 4.0</td>
<td>11M</td>
</tr>
<tr>
<td>00</td>
<td>2000</td>
<td>29M</td>
</tr>
<tr>
<td>01</td>
<td>XP</td>
<td>45M</td>
</tr>
<tr>
<td>03</td>
<td>Server 2003</td>
<td>50M</td>
</tr>
<tr>
<td>91</td>
<td>Linux kernel</td>
<td>10K</td>
</tr>
<tr>
<td>94</td>
<td>Linux 1.0.0</td>
<td>176K</td>
</tr>
<tr>
<td>12</td>
<td>Linux 3.3 kernel</td>
<td>15M</td>
</tr>
<tr>
<td>05</td>
<td>MacOS 10.4</td>
<td>86M</td>
</tr>
<tr>
<td>07</td>
<td>Debian 4.0</td>
<td>283M</td>
</tr>
<tr>
<td>09</td>
<td>Debian 5.0</td>
<td>324M</td>
</tr>
</tbody>
</table>
Chapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux
Major Achievements

- Impossible to deal with OS complexity without certain systematic ways of managing resources, jobs, and users
- Major advances in the development of operating systems (layout of the book):
 - Processes and threads (ch. 3-4)
 - IPC (inter-process communication) and synchronization mechanisms (ch. 5-6)
 - File systems (ch. 11-12)
 - Memory (RAM) management (ch. 7-8)
 - Scheduling and resource allocation (ch. 9-10)
 - Information protection and security (ch. 14-15)

covered in this class
Chapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux
MS Windows

- Hardware abstraction layer (hal.dll)
- Simple kernel (ntoskrnl.exe)
- Native API (ntdll.dll)
- Win32 API (kernel32.dll, user32.dll, gdi32.dll)
- Wrappers and frameworks (MFC, .NET, msvcrtd.dll)

System services
- I/O manager
- Cache manager
- File system manager
- Device drivers
- Process and thread manager
- Object manager
- Virtual memory manager
- Simple kernel (ntoskrnl.exe)
- Hardware abstraction layer (hal.dll)

Session manager
- Winlogon
- Security policy
- Service manager

Wrappers and frameworks
- Session manager
- Winlogon
- Security policy
- Service manager

Kernel system processes
- I/O manager
- Cache manager
- File system manager
- Device drivers
- Runtime libraries
- Process and thread manager
- Object manager
- Virtual memory manager
- Simple kernel (ntoskrnl.exe)
- Hardware abstraction layer (hal.dll)

User mode
- managed user processes
- System services

Kernel mode
- low-level user processes
- Kernel system processes

I/O manager
- Wrappers and frameworks
- Session manager
- Winlogon
- Security policy
- Service manager

Process and thread manager
- Session manager
- Winlogon
- Security policy
- Service manager

Kernel system processes
- I/O manager
- Cache manager
- File system manager
- Device drivers
- Runtime libraries
- Process and thread manager
- Object manager
- Virtual memory manager
- Simple kernel (ntoskrnl.exe)
- Hardware abstraction layer (hal.dll)

System services
- Session manager
- Winlogon
- Security policy
- Service manager

Kernel system processes
- I/O manager
- Cache manager
- File system manager
- Device drivers
- Runtime libraries
- Process and thread manager
- Object manager
- Virtual memory manager
- Simple kernel (ntoskrnl.exe)
- Hardware abstraction layer (hal.dll)

User mode
- managed user processes
- System services

Kernel mode
- low-level user processes
Homework #1

- When running A*
 - Incorrect # of nodes if weight is integer in $q = L + \frac{w}{(d+1)}$
- Basic BFS and DFS
 - Order of traversal on this graph?

Adjacency list
- A: E, D, B
- B: A, G
- C: E, D, F
- D: A, C
- E: A, C
- F: C, G
- G: B, F
Homework #1

- Refresh the concept of search
 - Assume an undirected graph $G = (V,E)$
 - Start node $s \in V$
- Maintain two structures
 - Unexplored set U
 - Discovered set D
- Approach #1:

```java
U.add(s)
while ( U.notEmpty() )
    x = U.removeNextNode() // node to explore
    if ( D.find(x) == true ) // if already explored, ignore
        continue
    N = G.getNeighbors(x) // N is a set of nodes
    if ( N.size() == 0 ) break // exit?
    for each y in N
        U.add(y)
```

Any problems?
Homework #1

• This code fails to actually insert anything into D
• Correct version:

```java
U.add(s)
while (U.notEmpty())
    x = U.removeNextNode()
    if (D.find(x) == true) // if already explored, ignore
        continue
    D.add(x)
    N = G.getNeighbors(x)
    if (N.size() == 0) break // exit?
    for each y in N
        U.add(y)
```

Any drawbacks?

• Requires huge storage as each node may be pushed into U as many times as there are links to it
 - Not advisable in practice
Homework #1

• Approach #2 inserts a single copy of each node in U:

```cpp
U.add(s); D.add(s); // s = source node
while ( U.notEmpty() )
    x = U.removeNextNode();
    N = G.getNeighbors(x);
    if ( N.size() == 0 ) break // exit?
    for each y in N
        if ( D.find(y) == false ) // has been pushed in U?
            U.add(y)
            D.add(y)
```

Always use this version!

• For most types of non-trivial exploration, approach #2 is far superior to #1

• What if D has a function that combines find/add?
 - Can directly use STL set’s insert() function
Homework #1

- When you find the exit, how far is it from s?
- **Idea**: make U keep track of tuples (nodeID, distance)

```c
U.add (s, 0); D.add (s);
while ( U.notEmpty () )
    t = U.removeNextTuple (); // t is a tuple
    N = G.getNeighbors (t.ID)
    if ( N.size () == 0 )
        printf ("Found at distance %d\n", t.distance)
        break
    for each y in N
        if ( D.find (y) == false ) // new node?
            U.add (y, t.distance + 1)
            D.add (y)
```

- Note that U.add() also needs light intensity for bFS/A*
 - See the handout for details
Homework #1

- Reusing the search algorithm
 - Create a base class

```cpp
class Ubase {
    virtual void Add(uint64 ID, int distance, float intensity) = 0;
    virtual UnexploredRoom RemoveNextTuple(void) = 0;
    ...
}
```

- Inherit four classes

```cpp
class Ubreadth : public Ubase {
    // implement a queue here
}
class Udepth : public Ubase {
    // implement a stack here
}...
```

- Create base pointer to a specific class, then send it to search()

```cpp
Ubase *ptr;
if (searchType == BFS) {
    ptr = new Ubreadth;
} else if ...
Search(ptr);
```

```cpp
Search(Ubase *U) {
    while (U->size() > 0) {
        ...
    }
}
```